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1.   Accomplishments 

1.1. Summary of accomplishments 

The mission of the Defense Threat Reduction Agency requires the quantitative study and accu- 
rate prediction for complex multiphysics systems that couple together physical processes spanning 
wide range of scales in behavior. Treatment of such systems depends on accurate numerical sim- 
ulation of mathematical models expressed as systems of partial differential equations posed on 
domains with complicated geometry. Prediction of the behavior involves treating the propagation 
of stochastic uncertainty through the mathematical models and solving inverse problems for de- 
termining parameters based on observations on model output. Quantifying the accuracy of such 
computations requires accurate estimation of the numerical error in quantities of interest com- 
puted from numerical solutions that take into account all sources of error, e.g. from discretization, 
representation of geometry, finite sampling. 

This project focuses on development of mathematical tools for dealing with these problems in 
the context of multiphysics models of interest using relevant numerical methods to the mission of 
the DTRA. The main approach is a posteriori error analysis based on computable residuals, solu- 
tion of adjoint problems, and variational analysis. This approach estimates the error in specified 
quantities of interest. Computable residuals involving the approximate solution are used to quan- 
tify the size of various discretization errors while the solution of adjoint equations (generalized 
Green's functions) are used to quantify the effects of stability in producing errors. Much of the 
project dealt with dealing the significant mathematical issues that arise when numerically solv- 
ing complex multiphysics models. Practical computational constraints requires the use of a wide 
variety of discretization approaches, e.g. operator decomposition and splitting, explicit time inte- 
gration, iterative solution methods with few iterations, finite volume and specialized finite differ- 
ence methods. The introduction of such techniques complicates both the identification of suitable 
residuals and definition of suitable adjoint problems. The project also dealt with issues arising in 
"multi-discretization" approaches, when various components of a coupled system are solved with 
different numerical methods and numerical grids. Another focus was the treatment of problems 
posed on complex domains, e.g. on manifold surfaces in space and/or on domains with complex 
boundaries. In this case, the goal was to treat the effects of inaccuracies and/or uncertainty in the 
representation of the domain geometry. Finally, we also establshed several rigorous convergence 
results for a class of goal-oriented adaptive methods that are designed to drivdriving the error in a 
specific quantity of interest below a given tolerance. 

Along with theoretical development, the project studied the practical implementation of a pos- 
teriori error estimates for complex physics, including high performance issues. The project also 
addressed the question of efficient computation. The availability of accurate error estimates raises 
the ability to develop efficient adaptive error control algorithms in which various discretization 
parameters are adjusted based on relative contributions to the overall error in order to achieve a 
desired accuracy with minimal computational work. In another direct, the project expanded a pos- 
teriori error estimates for computed distributions and probabilities arising in computational sensi- 
tivity analysis and developed generalized adaptive algorithms that allow for balancing all sources 
of error and uncertainty affecting the analysis. 

The project P.I.s' undertook a significant degree of interdisciplinary interaction during the 
projects in order to insure that project accomplishments would have impact in science and en- 
gineering. 

1.2. Detailed descriptions of specific accomplishments 

In this section, we describe specific technical accomplishments of the project. 
A posteriori error analysis for a transient conjugate heat transfer 

We analyzed the accuracy of an operator decomposition finite element method for a transient con- 
jugate heat transfer problem consisting of two materials coupled through a common boundary. We 
derive accurate a posteriori error estimates that account for the transfer of error between compo- 



nents of the operator decomposition method as well as the errors in solving the iterative system. 
We address a loss of order of convergence that results from the decomposition, and show that the 
order of convergence is limited by the accuracy of the transferred gradient information. We ex- 
tend a boundary flux recovery method to transient problems and use it to regain the expected order 
of accuracy in an efficient manner. In addition, we use the a posteriori error estimates to adap- 
tively compute the recovered boundary flux only within the domain of dependence for a quantity 
of interest. 
A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposi- 
tion approach to fluid-solid heat transfer 

We analyze a multiscale operator decomposition finite element method for a conjugate heat transfer 
problem consisting of a fluid and a solid coupled through a common boundary. We derive accurate 
a posteriori error estimates that account for all sources of error, and in particular the transfer of error 
between fluid and solid domains. We use these estimates to guide adaptive mesh refinement. In 
addition, we provide compelling numerical evidence that the order of convergence of the operator 
decomposition method is limited by the accuracy of the transferred gradient information, and adapt 
a so-called boundary flux recovery method developed for elliptic problems in order to regain the 
optimal order of accuracy in an efficient manner. In an appendix, we provide an argument that 
explains the numerical results provided sufficient smoothness is assumed. 
Nonparametric density estimation for randomly perturbed elliptic problems 

We study the nonparametric density estimation problem for a quantity of interest computed from 
solutions of an elliptic partial differential equation with randomly perturbed coefficients and data. 
We derive an efficient method for computing samples and generating an approximate probability 
distribution based on Lion's domain decomposition method and the Neumann series. We then 
derive an a posteriori error estimate for the computed probability distribution reflecting all sources 
of deterministic and statistical errors. Finally, we develop an adaptive error control algorithm 
based on the a posteriori estimate, we extend the analysis to include a "modeling error" term that 
accounts for the effects of the resolution of the statistical description of the random variation and 
modify the adaptive algorithm to adapt the resolution of the statistical description. We also prove 
some related convergence results. 
A posteriori error analysis for cell-centered finite volume methods for semilinear elliptic problems 

We conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed 
from a cell-centered finite volume scheme for a semilinear elliptic problem.   To carry out the 
analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite 
element method with special choice of quadrature. 
Blockwise adaptivity for time dependent problems based on coarse scale adjoint solutions 

We describe and test an adaptive algorithm for evolution problems that employs a sequence of 
"blocks" consisting of fixed, though non-uniform, space meshes. This approach offers the advan- 
tages of adaptive mesh refinement but with reduced overhead costs associated with load balancing, 
re-meshing, matrix reassembly, and the solution of adjoint problems used to estimate discretiza- 
tion error and the effects of mesh changes. We describe several strategies to determine appropriate 
block discretizations from coarse scale solution information using adjoint-based a posteriori error 
estimates and demonstrate the behavior of the algorithms in a set of examples. 

Conservative discretization and a posteriori error analysis for a cut cell diffusion problems with 
complex geometry 

We study the solution of a diffusive process in a domain where the diffusion coefficient changes 
discontinuously across a curved interface. We consider discretizations that use regularly-shaped 
meshes, so that the interface "cuts" through the cells (elements or volumes) without respecting 
the regular geometry of the mesh. Consequently, the discontinuity in the diffusion coefficients has 
a strong impact on the accuracy and convergence of the numerical method.  This motivates the 



derivation of computational error estimates that yield accurate estimates for specified quantities of 
interest. For this purpose, we adapt the well-known adjoint based a posteriori error analysis tech- 
nique used for finite element methods. In order to employ this method, we describe a systematic 
approach to discretizing a cut-cell problem that handles complex geometry in the interface in a 
natural fashion yet reduces to the well-known Ghost Fluid Method in simple cases. We test the 
accuracy of the estimates in a series of examples. 
A measure-theoretic computational method for inverse sensitivity problems 

We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a 
deterministic map given specified uncertainty in a linear functional of the output of the map. This 
is a version of the model calibration or parameter estimation problem for a deterministic map. We 
assume that the uncertainty in the quantity of interest is represented by a random variable with 
a given distribution and we use the Law of Total Probability to express the inverse problem for 
the corresponding probability measure on the input space. Assuming that the map from the input 
space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by 
using the Implicit Function Theorem to derive a method for approximating the set-valued inverse 
that provides an approximate quotient space representation of the input space. We then derive an 
efficient computational approach to compute a measure theoretic approximation of the probability 
measure on the input space imparted by the approximate set-valued inverse that solves the inverse 
problem. We also treat the situation in which the output of the map is determined implicitly and 
is difficult and/or expensive to evaluate, e.g requiring the solution of a differential equation, and 
hence the output of the map is approximated numerically. The main goal is an a posteriori error 
estimate that can be used to evaluate the accuracy of the computed distribution solving the inverse 
problem taking into account all sources of statistical and numerical deterministic errors. We present 
a general analysis for the method and then apply the analysis to the case of a map determined by 
the solution of an initial value problem. 
A posteriori analysis ofmultirate numerical methods for multiscale ordinary differential equations 

We analyze a multirate time integration method for systems of ordinary differential equations that 
present significantly different scales within the components of the model. We interpret the mul- 
tirate method as a multiscale operator decomposition method and use this formulation to conduct 
both an a priori error analysis and a hybrid a priori - a posteriori error analysis. The hybrid analy- 
sis has the form of a computable a posteriori leading order expression and a provably-higher order 
a priori expression. Both analyses distinguish the effects of the discretization of each component 
from the effects of multirate solution. The effects on stability arising from the multirate solution 
are reflected in perturbations to certain associated adjoint operators. 

Convergence theory for goal-oriented adaptive methods 

In the; first of the convergence theory subprojects of the DTRA project, We developed a new con- 
vergence theory for a general class of adaptive approximation algorithms for nonlinear operator 
equations, and then used the theory to obtain convergence, contraction, and optimality results for 
practical adaptive finite element methods (AFEM) applied to several classes of nonlinear elliptic 
equations and systems of elliptic equations. The results can be viewed as extending the recent con- 
vergence results for linear problems of Morin, Siebert and Veeser, and of Nochetto et. al to more 
general nonlinear problems (with G. Tsogtgerel and Y. Zhu). We also develop new mathematical 
results for hierarchical error indicators to drive AFEM algorithms, and establish condition number 
estimates for appropriate preconditioners (with J. Ovall and R. Szypowski). We have further ex- 
tended these results to the class of adaptive methods that were the target of this DTRA research 
probejet: goal-oriented adaptive methods that are designed to drive the error in a quantity of inter- 
est below a given tolerance. In 2009, Mommer and Stevenson developed a goal-oriented adaptive 
method for the Poisson equation, together with rigorous convergence and complexity results for 
their method, establishing what was apparently the first convergence result for a goal-oriented 
adaptive method. We have now extended the results of Mommer and Stevenson to goal-oriented 



adaptive methods for general linear convection-diffusion elliptic problems (with S. Pollock). In a 
second manuscript, these results were further extended to a large class of scalar nonlinear prob- 
lems (with S. Pollock and Y. Zhu). All three articles have now been posted on arXiv, submitted 
for publication, and are currently in review. All of the techniques are demonstrated for practical 
problems of interest using the FETK software (see below). 
Analysis of multiphysics problems with complex domains 

We analyzed a large class of regularized Navier-Stokes and Magnetohydrodynamics (MHD) mod- 
els in three-dimensional spatial domains, a class which includes the Navier-Stokes equations, the 
Navier-Stokes-alpha model, the Leray-alpha model, the Modified Leray-alpha model, the Simpli- 
fied Bardina model, the Navier-Stokes-Voight model, the Navier-Stokes-alpha-like models, and 
certain MHD models, in addition to representing a larger 3-parameter family of models not previ- 
ously analyzed. We recovered a number of known results for established models, but also obtained 
new results for all models in this general family, including existence, regularity, uniqueness, sta- 
bility, attractor existence and dimension, and existence of determining operators. (J. Nonlinear 
Science 2009, with E. Lunasin and G. Tsogtgerel.) 

We then develop and analyze numerical methods for approximation of stationary and evolution 
problems on surfaces, including coupled elliptic-parabolic systems. A major theoretical break- 
trough was showing how the recent finite element error estimates of Demlow and Dziuk can be 
recovered from a more general approach involving the analysis of variational crimes in Hilbert 
complexes, generalizing their results for surface finite elements to arbitrary spatial dimension and 
to applications involving higher-dimensional differential forms and both linear and nonlinear equa- 
tions. This generalization was made possible through the use and extension of finite element exte- 
rior calculus (FEEC). (Found. Comput. Math. 2012, with A. Stern.) We have now extended this 
work in FEEC in the direction of time-dependent problems; we completed and submitted a new 
manuscript in 2012 that extends these results on surface finite element methods to scalar parabolic 
and hyperbolic problems, including again nonlinear problems (with A. Gillette). We also give an 
analysis of the singularities in a fundamentally important model in biochemistry, and develop a 
number of AFEM-based numerical techniques for treating these degenerate features in a provably 
high-fidelity way (Comm. Comput. Phys. 2012, with J. McCammon, Y. Zhou, Y. Zhu, Z. Yu). 

In addition, we have developed and implemented goal-oriented, adjoint-based, a posteriori 
error estimates for elliptic problems on smooth manifolds. In particular, the estimates take into 
account the effects of domain curvature on accuracy. We also considered the problem of small 
random perturbations to the manifold, pointing the way to treat problems in which the domain 
is determined experimentally or by measurement. This work is nearing completion and will be 
submitted in Summer 2012 (with W. Newton) 
Analysis of elliptic problems on domains with randomly perturbed boundaries 

We developed a systematic approach to solve elliptic problems on domains that have randomly 
perturbed boundaries, after first classifying such problems into several different classes. The results 
are particularly relevant to situations in which the boundaries are obtained through measurement 
or are subject to error. The approach avoids the need to remesh each new domain in a random 
sampling Monte Carlo solution. Moreover, we derive a posteriori error estimates that indicate how 
random perturbations in the boundary affect the accuracy of computed solutions. 
A posteriori error analysis of explicit, IMEX, and truncated Picard iteration time integration meth- 
ods 

Explicit, Implicit/Explicit (IMEX), and truncated Picard iteration time integration methods are 
widely employed to solve multiphysics applications in defense and department of energy enter- 
prises, e.g. such as reacting flows. Such methods requires significant alterations for a posteriori 
error analysis in order to describe the effects of these approaches on both stability and accuracy. 
Therefore, last year we undertook the systematic study of a posteriori error analysis for explicit, 
truncated Picard iteration, and implicit/explicit (IMEX) time integration methods.   For explicit 



methods, we introduce special projection operators into the standard finite element formulation for 
evolution problems. These projection operators are (1) a truncated Taylor expansion computed at 
a past time node and (2) extrapolation from a interpolatory polynomial using values at a collection 
of previous nodes. We then alter the a posteriori error analysis to include terms that measure the ef- 
fects of these projections, yielding distinct "explicit" time integration terms in the a posteriori error 
analysis. We recently have extended this approach to treat EVIEX methods. To analyze truncated 
Picard iteration methods, we exploit an old result of H. Keller and J. Keller for the "matricant", 
which is the exponential form of the solution operator of a linear non-autonomous evolution prob- 
lem. This provides a way to define the adjoint for a solution obtained by truncated Picard iteration, 
which we then use in the a posteriori error analysis. We have also extended this analysis to implicit 
methods that employ Jacobi iteration to solve the systems at each step. 
Coupled parabolic-elliptic systems 

Estep and Hoist collaborated on the development methods and a posteriori error analysis for cou- 
pled parabolic-elliptic systems of equations. The main application is on modeling of black holes. 
A new development in the Hoist group has been the extension of their recent work on finite ele- 
ment exterior calculus to parabolic and hyperbolic problems (completed and submitted in 2012), 
which will provide a very strong mathematical framework for the development of methods and a 
posteriori analysis for coupled parabolic-elliptic problems. This extension to FEEC is now being 
combined with our recent work on goal-oriented adaptive methods using a variational framework, 
by which the elliptic component of the system is combined with implicit time-stepping schemes 
to provide "constraints" in a Lagrange multiplier formulation. We are able to show convergence 
for the adaptive scheme, generalizing our recent work on convergence theory for goal-oriented 
adaptive methods (with S. Pollock, Y. Zhu). 
Coupled ordinary differential equation - parabolic differential equation 

Estep and Hameed (along with collaborators) derived and implemented a posteriori error estimates 
for systems of evolution equations consisting of a reaction-diffusion problem posed on a global 
domain coupled to systems of ordinary differential equations in a collection of small cells parti- 
tioning the global domain. The local cell problems model chemical reactions that determine the 
local physical conditions driving the parabolic problem. The analysis takes into account the itera- 
tion error in solving the coupled systems. 
New approaches to adaptive error control for evolution problems 

Estep and Hameed (along with collaborators) developed new adaptive error control algorithms that 
take into account cancellation of errors to improve efficiency. The approach identifies periods of 
time over which there is significant cancellation. Inside the regions, uniform refinements are used 
to preserve the favorable cancellation, while the time step sizes in the various regions are adjusted 
according to the contribution to the overall error from the regions. 
Implementation of theoretical results 

The last major goal in this project is implementation of the theoretical results into the FETK code. 
For this purpose, we recruited a full time postdoc, Ryan Szypowski, working at UCSD under the 
supervision of co-PI Michael Hoist with responsibility to carry out the implementation and testing. 
He is being jointly supervised by the PI D. Estep. This FETK deveopment has focused on providing 
a robust, theory-based convergent adaptive finite element implementation for nonlinear problems 
which retains linear complexity. This has included work on the following specific components, 
which have been implemented in both the MATLAB subset FETKLab of the 2D code in FETK as 
well as in the full 2D/3D code in FETK: 

1. The element marking strategy was updated to be based on "Dorfler Marking". Special care 
was taken to use a linear-time complexity binning approach as opposed to an actual sort. 
Only this type of marking strategy, which is not often used in practice due to its poten- 

, tial costs unless carefully implemented, allows for establishing both convergence and linear 
overall computational complexity of the adaptive algorithms. 



2. A number of new error estimators were added. They include: 

(a) A hierarchical error estimator based on face-bump functions which was proven in our 
recent publications to be efficient, reliable, and robust. This work included the addition 
of a new cubic bump finite element space, which led to a better understanding of how 
we can improve the finite element space implementation to allow for future additions. 

(b) An error estimator based on the solution of a dual problem, which we refer to as dual- 
weighted residual (DWR). This implementation involved leveraging the work on the 
bump-function library above, as well as the development of high-order quadrature 
rules, and the ability to maintain two distinct and unrelated adaptive meshes during 
a computation, with quantities being projected back and forth between the meshes as 
needed. 

(c) An error estimator based on smoothed gradients. This is based on recent work of R. 
Bank and J. Xu, collaborators of the Pis. 

3. W. Newton, co-advised by Estep and Hoist, implemented the a posteriori error estimates that 
account for error in the description of the manifold on which the problem is posed developed 
in his thesis. 

4. A driver application for solving nonlinear problems using inexact Newton solvers based on 
a multilevel approach was written. This has been used for most of the problems described 
above. 

5. Prior to 2013, FETK and the FETKLab MATLAB subset of FETK were primarily based on 
linear finite element discretizations, with enough partial support for higher-order elements 
to allow for the use of e.g. bump functions in error indicators and formulation of dual prob- 
lems. A general element class was developed in early 2013 to allow for use of any type 
of Lagrange-type element for either the primarl or dual problem. Both linear and quadratic 
elements were then implemented and are provided with the FETK code base as element 
examples. Our recent manuscripts with new convergence results for goal-oriented methods 
contain a large collection of numerical examples that now exploit this infrastructure to care- 
fully compare a number of adaptive methods based on goal functions (with S. Pollock and 
Y. Zhu). 

2.    Training and Professional Development 

The support of this project has partially contributed to the training and professional devel- 
opment for three graduate students and three postdocs. This includes specialized research-level 
instruction and individual mentoring as well as participation in large research group activities di- 
rected by the Pis. Students and postdocs were encouraged to participate in professional meetings 
and to interact with researchers in other universities and in national DOE laboratories as appropri- 
ate. Students and postdocs were trained to write and prepare and deliver professional presentations. 

Details for the trainees: 

• Will Newton received his Ph.D. from CSU in 2011, and then was hired as a Research Scien- 
tist Class I in PI Estep's group. His primary focus is a project on multiscale models of new 
nuclear fuels supported by a contract from Idaho National Laboratory. He has continued to 
work on research related to this project following up on the work in his thesis. Thesis is "A 
Posteriori Error Estimates for the Poisson Problem on Closed, Two-Dimensional Surfaces", 
available from Colorado State University Library. 

• Nate Burch received his Ph.D. from CSU in 2011, and then took a two year postdoc po- 
sition at SAMSI (Statistical and Mathematical Sciences Institute) as part of the Program 
on Uncertainty Quantification. Thesis is "Probabilistic Foundation of Nonlocal Diffusion 
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• 

• 

• 

and Formulation and Analysis for Elliptic Problems on Uncertain Domains", available from 
Colorado State University Library. 

The CSU postdoc Jehanzeb Hameed is in the second year of his position in PI Estep's group. 
His primary focus is a project on a Department of Energy Uncertainty Quantification project 
that is jointly conducted with Sandia National Laboratory. Part of his research is related to 
the activities supported in this project. 

Jonny Serencsa received his Ph.D. from UCSD in 2012, and has been doing pre- and post- 
doctoral work at UC Davis. His doctoral work was jointly supervised by PI Hoist and S. 
Shkoller at UC Davis, and he is currently working for a startup company in the Bay Area. 

Ryan Szypowski received his Ph.D. from UCSD in 2008, and remained at UCSD working 
with Hoist as a postdoc and then research scientist until 2012. He moved to a tenure-track 
position in the Mathematics Department at Cal Poly Pomona in Fall 2012. 

Andrew Gillette received his Ph.D. from UT Austin in 2011, and joined Hoist's group at 
UCSD as a postdoctoral fellow in Fall 2011. He helped push forward both the the project 
involving Ryan Szypowski, and the development of an FEEC-based error analysis frame- 
work for parabolic and hyperbolic problems. In Fall 2013, Andrew is starting a tenure-track 
faculty position in the mathematics department at the University of Arizona. 

Sara Pollock received her Ph.D. from UCSD 2012, and remained at UCSD working with 
Hoist as a postdoc during the 2012-2012 academic year. In Fall 2013, Sara is starting a 
3-year named postdoctoral position in the mathematics department at Texas A&M. 

3.   Dissemination 

We have disseminated the research in this project through submission of peer-reviewed research 
articles, presenting many invited talks at universities and conferences, and publishing software 
developed in this project for public access. A summary of this activity during this project: 

• 

• 

• 

• 

53 research articles related to the project research have appeared or are accepted 

19 research articles related to the project research are currently under review 

5 book and/or book chapters have appeared or are being written 

• 60 invited lectures at universities and professional meetings 

Applications to multiscale/multiphysics physical and engineering systems 

In conjunction with collaborators in engineering, chemistry and biophysics, we have applied many 
of the algorithms and techniques for multiphysics and multiscale problems developed in this 
DTRA-supported research program. Our focus continues to be on applications in material, chemi- 
cal and biological physics of relevance to DOD, DTRA, and DOE missions. In addition to our pub- 
lications placed in the mathematics literature, we have placed joint publications from these research 
collaborations with physical scientists and engineers in a broad spectrum of leading scientific jour- 
nals to maximize the impact of our results, including: Physical Review Letters, Physical Review 
D, Journal of Nonlinear Science, Classical and Quantum Gravity, Journal of Chemical Theory 
and Computation, Journal of Cell Science, Journal of Structural Biology, Biophysical Journal, 
PLoS Computational Biology, IMA Journal on Applied Mathematics, Computer Aided Geomet- 
ric Design, BIT, Applied Numerical Mathematics, IEEE Journal on Engineering in Medicine and 
Biology, IEEE Transactions on Biomedical Computing, Frontiers in Computational Physiology 
and Medicine, Investigative Ophthalmology and Visual Science, Journal of Scientific Computing, 
Journal of Applied Mathematics and Computation, Communications in Computational Physics, 



Journal of Molecular Graphics and Modeling, Journal of Physical Chemistry B, Journal of Chem- 
ical Physics, Communications in Mathematical Physics, Annals of Nuclear Engineering, Journal 
of Computational Physics, Acta Biomaterialia, Computer Methods in Applied Mechanics and En- 
gineering, Journal of Engineering Mathematics, and Foundations of Computational Mathematics. 

4.   Products 

4.1.    Publications, conference papers, and presentations 

The following papers were accepted or appeared during March 27, 2009 - September I, 2009 

• A posteriori analysis and adaptive error control for multiscale operator decomposition meth- 
ods for coupled elliptic systems I: One way coupled systems, V Carey, D. Estep, and S. 
Tavener, SIAM Journal on Numerical Analysis 47 (2009), 740-761 

• A posteriori error analysis for a transient conjugate heat transfer problem, D. Estep, S. 
Tavener, T. Wildey, Finite Elements in Analysis and Design 45 (2009), 263-271 

• Nonparametric density estimation for randomly perturbed elliptic problems I: Computa- 
tional methods, a posteriori analysis, and adaptive error control, D. Estep, A. Malqvist, and 
S. Tavener, SIAM Journal on Scientific Computing 31 (2009), 2935-2959 

• Solving the Einstein constraints on multi-block triangulations using finite elements, O. Ko- 
robkin, B. Aksoylu, M. Hoist, E. Pazos, and M. Tiglio, Class. Quant. Grav. 26 (2009), No. 
14, 145007 (28 pp). (arXiv:gr-qc/0801.1823) 

• An adaptive finite element method for solving the exact Kohn-Sham equation of density func- 
tional theory, E. Bylaska, M. Hoist, and J. Weare, Journal of Chemical Theory and Compu- 
tation, 5 (2009), pp. 937-948. 

• 

• 

• 

• 

Finite Element Analysis of Drug Electrostatic Diffusion: Inhibition Rate Studies in Nl Neu- 
raminidase, Y. Cheng, M. Hoist, and J.A. McCammon, Biocomputing 2009: Proceedings of 
the Pacific Symposium, R.B. Altman, A.K. Dunker, L. Hunter, T. Murray, and T.E. Klein, 
eds., 2009, pp. 281-292. 

Three-dimensional reconstruction reveals new details of membrane systems for calcium sig- 
naling in the heart, T. Hayashi, M.E. Martone, Z. Yu, A. Thor, M. Doi, M. Holst, M.H. 
Ellisman, and M. Hoshijima, J. Cell Sei., Vol. 122 (April, 2009), No. 7, pp. 1005-1013. 

Rough Solutions of the Einstein Constraints on closed manifolds without near-CMC condi- 
tions, M. Hoist, G. Nagy, and G. Tsogtgerel, Comm. Math. Phys., Vol. 288 (June 2009), 
No. 2, pp. 547-613. (arXiv:gr-qc/0712.0798) 

Multi-Scale Modeling of Ventricular Myocytes: Contributions of structural and functional 
heterogeneities to excitation-contraction coupling in the normal and failing rodent heart, S. 
Lu, A. Michailova, J. Saucerman, Y Cheng Z. Yu, T. Kaiser, W. Li, R. Bank, M. Hoist, A. 
McCammon, T. Hayashi, M. Hoshijima, P. Arzberger, and A. McCulloch, IEEE Journal on 
Engineering in Medicine and Biology, Vol. 28 (March-April 2009), No. 2, pp. 46-57. 

Convergence and Optimality of Adaptive Mixed Finite Element Methods, L. Chen, M. Hoist, 
and J. Xu, Math. Comp., Vol. 78 (2009), No. 265, pp. 33-53. 
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The following papers were accepted or appeared during September 2, 2009 - September 1, 2010 

• Nonparametric density estimation for randomly perturbed elliptic problems II: Applications 
and adaptive modeling, D. Estep, A. Malqvist, S. Tavener, International Journal for Numer- 
ical Methods in Engineering 80 (2009), 846-867 

• A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic 
problems, D. Estep, M. Pernice, D. Pham, S. Tavener, H. Wang, Journal of Computational 
and Applied Mathematics 233 (2009), 459 - 472 

• A posteriori error estimation and adaptive mesh refinement for a multi-discretization oper- 
ator decomposition approach to fluid-solid heat transfer, D. Estep, S. Tavener, T Wildey, 
Journal of Computational Physics 229 (2010), 4143 - 4158 

• Blockwise adaptivity for time dependent problems based on coarse scale adjoint solutions, 
V. Carey, D. Estep, A. Johansson, M. Larson, and S. Tavener, SLAM Journal on Scientific 
Computing 32 (2010), 2121 - 2145 

• Numerical analysis ofCa2+ signaling in rat ventricular myocytes with realistic transverse- 
axial tubular geometry and inhibited sarcoplasmic reticulum, Y. Cheng, Z. Yu, M. Hoshi- 
jima, M. Hoist, A. McCulloch, and J. M. ad A.P. Michailova, PLoS Computational Biology, 
6 (2010), pp. el000972:l-16. 

• Poisson-Nernst-Planck equations for simulation biomolecular diffusion-reaction processes 
I: Finite element solutions, B. Lu, M. Hoist, J. McCammon, and Y Zhou, J. of Comput. 
Phys. 229 (2010), 6679-7794 (16 pp). 

• Analysis of a general family of regularized Navier-Stokes and MHD models, M. Holst, E. 
Lunasin, and G. Tsogtgerel, J. Nonlin. Sei., 20 (2010), pp. 523-567. 

The following book chapter appeared during September 2, 2009 - September 1, 2010 

• Error estimation for multiscale operator decomposition for multiphysics problems, D. Es- 
tep, Chapter 11, in Bridging the Scales in Science and Engineering, J. Fish, editor, Oxford 
University Press, 2010 

The following books were under contract or appeared during September 2, 2009 - April 5, 2013 

• Practical Analysis in Many Variables, D. Estep, SIAM, 2010. 

• Green's Functions and Boundary Value Problems, Third Edition, I. Stakgold and M. Hoist, 
John-Wiley, 888 pages, February 2011. 

The following nonrefereed papers appeared during September 2, 2009 - September 1, 2010 

• CSE 2009: Graduate Education in CSE - Structure for the Zoo?, H.-J. Bungartz and D. 
Estep, SIAM News 42, 2009 

• Computational Science and Engineering Education: SIAM's Perspective, H.-J. Bungartz, D. 
Estep, U. Rude, and P. Turner, IEEE Computing in Science and Engineering 11 (2009), 5-11 

• Interview with Chief Editor of the SIAM CSE Book Series, D. Estep, SIAM News 43 (2010) 
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The following papers were accepted or appeared during September 2, 2010 - September 1, 2011 

• A computational measure theoretic method for inverse sensitivity problems 1: Basic method 
and analysis, J. Breidt, T. Butler, and D. Estep, SIAM Journal on Numerical Analysis, 2011, 
49(2011), 1836-1859 

• A posteriori error analysis for a cut cell finite volume method, D. Estep, S. Tavener, M. 
Pernice, H. Wang, Computer Methods in Applied Mechanics and Engineering, 2010, 233 
(2009), 459-472 

• Parameter estimation and directional leverage with applications in differential equations, N. 
Burch, D. Estep, and J. Hoeting, Metrica, Metrika, DOI: 10.1007/s00184-011-0358-4, 2011 

• Continuum Modeling and Control of Large Mobile Networks, Y. Zhang, E. K. P. Chong, J. 
Hannig, and D. Estep, Proceedings of the 49th Annual Allerton Conference on Communica- 
tion, Control and Computing, Illinois, 2011 

• Nonparameteric density estimation for randomly perturbed elliptic problems III: Conver- 
gence, complexity, and generalizations, D. Estep, M. Hoist, and A. Malqvist, Journal of 
Applied Mathematics and Computing 38 (2012), 367-387 

• An efficient, reliable and robust error estimator for elliptic problems in M.3, M. Holst, J. 
Ovall, and R. Szypowski, Applied Numerical Mathematics, 61 (2011), 675695 

• Efficient mesh optimization schemes based on optimal delaunay triangulations, L. Chen and 
M. Hoist, Computer Methods in Applied Mechanics and Engineering 200 (2011), 967984 

• Adaptive finite element modeling techniques for the Poisson-Boltzmann equation, M. Hoist, 
J. McCammon, Z. Yu, Y Zhou, and Y Zhu, Communications in Computational Physics, 11 
(2012), pp. 179-214. 

• Convergence analysis of finite element approximations of the Joule heating problem in three 
spatial dimensions, M. Hoist, M. Larson, A. Malqvist, and R. Soderlund, BIT, 50 (2010), 
pp.781-795. 

• Semilinear mixed problems on Hilbert complexes and their numerical approximation, M. 
Hoist AND A. Stern, Foundations of Computational Mathematics, 2010, 12 (2012), pp. 363- 
387 

• Adaptive solution of the Poisson-Boltzmann equation using goal-oriented error indicators, 
B. Aksoylu, S. Bond, E. Cyr, AND M. Hoist, J. Sei. Comput. 52 (2012), 202-225 (23 pp). 

The following papers were accepted or appeared during September 2, 2011 - September 1, 2012 

• A computational measure theoretic approach to inverse sensitivity problems II: A posteriori 
error analysis, T. Butler, D. Estep and J. Sandelin, SLAM Journal on Numerical Analysis, 50 
(2012) 

• Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics, K. 
Troyer, D. Estep, and C. Puttlitz, Acta Biomaterialia 8 (2012), 234-244 

• A posteriori analysis of multirate numerical method for ordinary differential equations, D. 
Estep, V. Ginting, S. Tavener, 2012, Computer Methods in Applied Mechanics and Engi- 
neering, 223-224 (2012), 10-27 

• Adaptive error control for an elliptic optimization problem, Applicable Analysis, D. Estep 
and S. Lee, 2012, DOI: 10.1080/00036811.2012.683785, 1-15 
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• Analysis of routing protocols and interference-limited communication in large networks via 
continuum modeling, N. Burch, E. Chong, D. Estep, J. Hannig, Journal of Engineering Math- 
ematics, 2012, (DOI) 10.1007/sl0665-012-9566-9 

• A numerical method for solving a stochastic inverse problem for parameters, T. Butler and 
D. Estep, Annals of Nuclear Energy, 2012, 10.1016/j.anucene.2012.05.016 

• Geometric variational crimes: Hubert complexes, finite element exterior calculus, and prob- 
lems on hyper surf aces, M. Hoist and A. Stern, Foundations of Computational Mathematics, 
12(2012), pp. 263-293. 

• Multi-scale modeling of calcium dynamics in ventricular myocytes with realistic transverse 
tubules, Z. Yu, G. Yao, M. Hoshijima, A. Michailova, and M. Holst, IEEE TBME Let- 
ters, Special Issue on Multi-Scale Modeling and Analysis for Computational Biology and 
Medicine, 58 (2011), No. 10, 2947-2951 (4 pp). 

• Multiscale continuum modeling and simulation of biological processes: From molecular 
electro-diffusion to sub-cellular signaling transduction, Y. Cheng, M. Holst, J. McCammon, 
and A. Michailova, Comput. Sei. Disc, 5 (2012), 015002-015015 (13 pp). 

• The Navier-Stokes-Voight model for image inpainting, M. Ebrahimi, M. Hoist, and E. Lu- 
nasin, IMA J. Appl. Math., doi:10.1093/imamat/hxr069 (2012), 1-26 (26 pp). 

• Numerical bifurcation analysis of conformal formulations of the Einstein constraints, M. Hoist 
and V. Kungurtsev, Phys. Rev. D, 84 (2011), pp. 124038(1)-124038(8). 

• Modeling cardiac calcium sparks in a three-dimensional reconstruction of a calcium re- 
lease unit, J. Hake, A. Edwards, Z. Yu, P. Kekenes-Huskey, A. Michailova, A. McCammon, 
M. Holst, M. Hoshijima, and A. McCuIloch, J. Physiol., 590 (2012), No. 18, 4403-4422 (18 
PP)- 

• Localized glaucomatous change detection within the proper orthogonal decomposition frame- 
work, M. Balasubramanian, D. Kriegman, C. Bowd, M. Holst, R. Winreb, P. Sample, and 
L. Zangwill, Invest. Ophthalmol. Vis. Sei., 53 (2012), No. 7, 3615-3628 (14 pp). 

• Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation, Z. Gao, 
Z. Yu, and M. Hoist, Computer Aided Geometric Design, 29(9):707-721, 2012. 

• Modeling effects ofL-type Ca2+ current and Na+-Ca2+ exchanger on Ca2+ trigger flux in 
rabbit myocytes with realistic T-tubule geometries, P. Kekenes-Huskey, Y. Cheng, J. Hake, 
F. Sachse, J. Bridge, M. Hoist, J. McCammon, A. McCuIloch, and A. Michailova, Frontiers 
in Physiology, 3 (2012), pp. 1-14. 

The following papers were accepted, appeared or were submitted and still pending review during 
September 2, 2011 - September 1, 2012 

• A Posteriori Analysis and Adaptive Error Control for Multiscale Operator Decomposition 
Solution of Elliptic Systems II: Fully Coupled Systems, V. Carey, D. Estep, S. Tavener, Inter- 
national Journal of Numerical Methods in Engineering, 2011, in revision 

• A posteriori analysis of an iterative multi-discretization method for reaction-diffusion sys- 
tems, J. H. Chaudhry, D. Estep, V. Ginting, and S. Tavener, Computer Methods in Applied 
Mechanics and Engineering, 2012, in revision 

• A-posteriori error estimates for mixed finite element and finite volume methods for problems 
coupled through a boundary with non-matching grids, T. Arbogast, D. Estep, B. Sheehan, 
and S. Tavener, IMA J. Numerical Analysis, 2012, in revision 
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• Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems 
with jump coefficients, B. Ayuso de Dios, M. Hoist, Y. Zhu, and L. Zikatanov, in Proceedings 
of the Twentieth International Conference on Domain Decomposition Methods, San Diego, 
USA, San Diego, CA, USA, February 2011. 

• Local multilevel preconditioners for elliptic equations with jump coefficients on bisection 
grids, L. Chen, M. Hoist, J. Xu, and Y. Zhu, Submitted for publication. 

• Local convergence of adaptive methods for nonlinear partial differential equations, M. Hoist, 
G. Tsogtgerel, and Y Zhu, Submitted for publication. 

• The Lichnerowicz equation on compact manifolds with boundary, M. Hoist and G. Tsogt- 
gerel, Submitted for publication. 

• Adaptive finite element methods with inexact solvers for the nonlinear Poisson-Boltzmann 
equation, M. Hoist, R. Szypowski, and Y Zhu, in Proceedings of the Twentieth International 
Conference on Domain Decomposition Methods, San Diego, USA, San Diego, CA, USA, 
February 2011. 

• Barrier methods for critical exponent problems in geometric analysis and mathematical 
physics, J. Erway and M. Hoist, Submitted for publication. 

• Finite element error estimates for critical exponent semilinear problems without angle con- 
ditions, R. Bank, M. Hoist, R. Szypowski, and Y Zhu, Submitted for publication. 

• Convergence and optimality of goal-orientied adaptive finite element methods for nonsym- 
metric problems, M. Hoist and S. Pollock, Submitted for publication. 

• Generalized solutions to semilinear elliptic PDE with applications to the Lichnerowicz equa- 
tion, M. Hoist and C. Meier, Submitted for publication. 

• Finite element exterior calculus for evolution problems, A. Gillette and M. Hoist, Submitted 
for publication. 

• Two-grid methods for semilinear interface problems, M. Hoist, R. Szypowski, and Y Zhu, 
Accepted for publication in Numer. Methods Partial Differtial Equations. 

• Convergence of goal-oriented adaptive finite element methods for semilinear problems, M. Hoist, 
S. Pollock, and Y Zhu, Submitted for publication. 

• Feature-preserving surface mesh smoothing via suboptional Delaunay triangulation, Z. Gao, 
Z. Yu, and M. Hoist, Graphical Models, 75 (2013), pp. 23-38. 

The following papers were accepted, appeared or were submitted and still pending review during 
September 2, 2012 - April 5, 2012 

• Multiphysics Simulations: Challenges and Opportunities, D. E. Keyes, L. C. Mclnnes, C. 
Woodward, W. Gropp, E. Myra, M. Pemice, J. Bell, J. Brown, A. Clo, J. Connors, E. Con- 
stantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, 
T Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras, A. Königes, K. Lee, A. Lott, Q. Lu, 
J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. Peters Randies, D. 
Reynolds, B. Riviere, U. Ruede, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel, 
B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, International Journal of High Performance 
Computing Applications (27), 2013. 
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• Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear 
Partial Differential Equations, Y Zhang, E. Chong, J. Hannig, and D. Estep, Abstract and 
Applied Analysis (16), 2013, doi:10.1155/2013/262581, 1-16 

• A posteriori error estimates for explicit time integration methods, J. Collins, D. Estep and S. 
Tavener, BIT Numerical Mathematics, 2012, submitted 

• Continuum Limits of Markov Chains with Application to Wireless Network Modeling, Y. 
Zhang, E. Chong, J. Hannig, and D. Estep, IEEE Access, 2013, submitted 

• A posteriori error estimation for the Lax- Wendroff finite difference scheme, J. B. Collins, D. 
Estep, and S. Tavener, Journal of Computational and Applied Mathematics, 2013, submitted 

• Convergence and optimality of adaptive methods in the Finite Element Exterior Calculus 
framework, M. Hoist, A. Mihalik, and R. Szypowski, Submitted for publication. 

• An alternative between non-unique and negative yamabe solutions to the conformal formu- 
lation of the einstein constraint equations, M. Hoist and C. Meier, Submitted for publication. 

• Non-uniqueness of solutions to the conformal formulation, M. Hoist and C. Meier, Submitted 
for publication. 

• Efficient computational in multiscale geometric modeling for biomolecular complexes, T. Liao, 
Y Zhang, P. Kekenes-Huskey, A. Michailova, M. Hoist, and J. A. McCammon, Submitted 
for publication. 

• Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems 
with jump coefficients, B. Ayuso de Dios, M. Hoist, Y Zhu, and L. Zikatanov, Accepted for 
publication in Math. Comp. 

4.2.   Presentations at meetings, conferences, seminars 

The following presentations were made during March 27, 2009 - September 1, 2009 

Burch: Research Seminar, Sandia National Laboratory, Albuquerque, New Mexico, 8/09 

Estep: Computational Science and Engineering (CSE) Annual Research Symposium, University 
of Illinois, Urbana-Champaign, Keynote Speaker, 4/09 

Estep:   SIAM Annual Meeting, Minisymposium on Predictive Computational of Multiscale- 
Multiphysics Applications, invited speaker, 7/09 

Estep: Workshop on Simulating the Spatial-Temporal Patterns of Anthropogenic Climate Change, 
Los Alamos Institute for Advanced Studies, Santa Fe, New Mexico, invited speaker, 8/09 

Estep: Colloquium, Department of Mathematics, University of Wyoming, 9/09 

Hoist 25th Pacific Coast Gravity Meeting (PCGM25), Eugene, Oregon, 4/09 

Hoist: 5th Annual Structured Integrators Workshop, Caltech, Pasadena, California, Plenary Speaker, 
5/09 

Hoist: FEniCS 2009 Workshop, Oslo, Norway, Plenary Speaker, 6/09 

Holst: Numerische Mathematik 50, Munich, Germany, Plenary Speaker, 6/09 

Hoist: Mathematical and Numerical Geometric Analysis Workshop, Frieburg, Germany, Plenary 
Speaker, 9/09 
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Holst: ICNAAM Conference, Crete, Greece, Minisymposium Speaker, 9/09 

Serencsa: CSME Seminar Series, UC San Diego, San Diego, California, 6/09 

The following presentations were made during September 2, 2009 - September 1, 2010 

Burch: ICMS Workshop on Uncertainty Quantification, Edinburgh, UK, 05/10 

Estep: Workshop on Adaptive and Multilevel Methods for Partial Differential Equations, Univer- 
sity of California San Diego, 11/09 

Estep: Seminar, Lawrence Livermore National Laboratory, 12/09 

Estep: Colloquium, Department of Atmospheric Science, Colorado State University, 1/10 

Estep: Seminar, University of Wisconsin, 2/10 

Estep: Seminar, Brown University, 3/10 

Estep: Seminar, University of Chicago, 3/10 

Serencsa: CCoM Seminar Series, UC San Diego, San Diego, California, 11/09 

Hoist: Plenary Lecture, Symposium on Mathematical Systems Biology, UCI, Irvine, California, 
1/10 

Hoist: Lecture, 26th Pacific Coast Gravity Meeting (PCGM26), San Diego, CA, 3/10 

Hoist: Plenary Lecture, Workshop on Unstructured Mesh Methods in Mathematical Physics, Jena, 
Germany, 8/10 

Hoist: Invited Lecture, Department of Mathematics, Free University of Berlin, Berlin, Germany, 
8/10 

Hoist: Invited Lecture, Department of Mathematics, Technical University of Berlin, Berlin, Ger- 
many, 8/10 

Hoist: Invited Lecture, Department of Mathematics, Jacobs University, Brehmen, Germany, 9/10 

The following presentations were made during September 2, 2010 - September 1, 2011 

Estep: SIAM Computational Science and Engineering Conference, Minisymposia on Numerical 
Discretization Error Estimation for Uncertainty Quantification, Progress in Computational 
Methods and Software for Tightly-coupled Multiphysics Applications, Numerical Methods 
for Stochastic Computation and Uncertainty Quantification, Numerical Challenges in Mi- 
c restructure Modeling for Materials Science, Reno, Nevada, 2011 

Estep: Seminar, Lawrence Livermore National Laboratory, 9/10 

Estep:   Seminar, Purdue University, 9/10 

Estep: Seminar, North Carolina State University, 11/10 

. Estep: Seminar, Lawrence Livermore National Laboratory, 1/11 

Estep: Seminar, University of Southern California, 3/11 

Estep: Plenary Talk, ICiS Workshop on Multiphysics Simulations: Challenges and Opportunities, 
Park City, Utah, 8/11 
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Holst: Invited Lecture, Department of Mathematics, Jacobs University, Bremen, Germany, 9/10 

Hoist: Invited Lecture, Workshop on Latest Trends and Developments in Computational Tech- 
nology and Methods for Solids, Structures, Fluids and Fluid-Structure Interaction, La Jolla, 
CA, 9/10 

Hoist: Invited ICES Lecture, University of Texas, Austin, TX, 2/11 

Hoist: Invited CVS Lecture, University of Texas, Austin, TX, 2/11 

Hoist: Colloquium, Department of Mathematics, University of Wisconsin, Madison, WI, 4/11 

Hoist: Colloquium, Department of Mathematics, The Penn State University, State College, PA, 
4/11 

Hoist: Colloquium, Department of Applied Mathematics, University of Washington, Seattle, WA, 
5/11 

Hoist: Seminar, Pacific Northwest National Laboratory, Richland, WA, 5/11 

Hoist: Plenary Lecture, Workshop on Advances and Challenges in Computational General Rela- 
tivity, Brown University, Providence, RI, 5/11 

Hoist: Invited Lecture, Schnelle Löser für partielle Differentialgleichungen, Mathematisches 
Forschungsinstitut Oberwolfach, Oberwolfach, Germany, 5/11 

The following presentations were made during September 2, 2011 - September 1, 2012 

Estep: Invited Lecture, Uncertainty Quantification for High-Performance Computing Workshop, 
Oak Ridge National Laboratory, 5/12 

Estep: Invited Lecture, 6th International Conference on Automatic Differentiation, Fort Collins, 
CO, 7/12 

Estep: Invited Paper, Joint Statistical Meetings, 8/12 

Estep: Invited Seminar, University of Chicago, 9/11 

Estep: Invited Seminar, Florida State University, 4/12 

Estep: Invited Seminar, Colorado School of Mines, 4/12 

Estep: Invited Colloquium, Statistical and Applied Mathematical Sciences Institute (SAMSI), 
4/12 

Hoist: Invited Lecture, Workshop on Geometric Partial Differential Equations: Theory, Numer- 
ics and Appli- cations, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Ger- 
many, 11/11 

Holst: Invited Lecture, JTO Faculty Fellowship Lecture (1 of 2), Institute for Computational 
Engineering and Science (ICES), University of Texas, Austin, TX, 11/11 

Hoist: Invited Lecture, JTO Faculty Fellowship Lecture (2 of 2), Institute for Computational 
Engineering and Science (ICES), University of Texas, Austin, TX, 1/12 

Hoist: Plenary Lecture, CSU Research Colloquium, Physics at CSU: Neutrinos to Nano Science, 
Colorado State University, Fort Collins, CO, 3/12 

Hoist: Plenary Lecture, 21st International Conference on Domain Decomposition Methods, Rennes, 
Frances, 6/12 
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The following presentations were made during September 2, 2012 - April 5, 2013 

Pollock: Center for Computational Mathematics Seminar, UCSD, San Diego, CA, 1/13. 

Pollock: Joint MAA-AMS Mathematics Meetings, San Diego, CA, 1/13. 

Pollock: Numerical analysis seminar, Texas A&M University, College Station, TX, 4/13. 

Pollock: CSME Seminar, UCSD, San Diego, CA, 4/13. 

Pollock: Minisymposium Lecture, SIAM Annual Meeting, San Diego, CA, 7/13. 

4.3. Websites 

Research results and software are presented at 

• http://www.stat.colostate.edu/~estep/ 

• http://ccom.ucsd.edu/~mholst/ 

4.4. Technologies and techniques 

Over the last several years, our DTRA-supported research team has led the development of 
the Finite Element ToolKit, which is an opensource finite element modeling toolkit designed for 
the simulation of coupled multiphysics problems with multiscale phenomena. The software has 
been designed and developed collaboratively by both Hoist and Estep, and consists of a collection 
of object-oriented class libraries written in C, C++, Objective C, and Python. There is also a 
MATLAB/Octave-based prototyping tool (FETKLab), the development of which has been done 
by both Estep and Hoist, as well as several of their graduate students. FETK (and FETKLab) are 
designed to adaptive discretize and solve coupled reaction-diffusion systems, and is based around 
state-of-the-art algorithms for simplex mesh generation, error estimation, mesh refinement, finite 
element discretization, iterative nonlinear and optimization techniques, and fast multilevel and 
domain decomposition-based linear solvers and preconditions. Many of the algorithms developed 
in our research articles as described in this report have been prototyped, implemented, and applied 
to applications in conjunction with physical scientists using FETK. The entire FETK source tree 
was released in June 2010 on the FETK.org website, as a major milestone of this DTRA project. 
A substantial extention to both FETK and FETKLab was completed in Spring 2013 that added 
general Lagrange-type elements for either primal or dual problems, and this new capability has 
been exploited in a number of our recent articles. 

In addition, we continue development on GAASP (Globally Accurate, Adaptive Sensitivity 
analysis Package) to extend its capabilities for both forward and inverse stochastic sensitivity anal- 
ysis of differential equations. 

5.    Impact 

5.1.    Impact on the principal disciplines of the project 

The numerical solution of multiscale, multiphysics models on complex domains along with 
the development of tools for predictive science and uncertainty quantification is one of the grand 
challenges facing the mathematical sciences at present. Such problems present a very complex pic- 
ture in terms of stability and important behaviors interacting across a wide range of scales, which 
makes the straightforward use of classical numerical methods and analyses extremely problematic, 
if not impossible. Classic approaches were developed in the context of models involving single 
physics phenomena operating at a narrow range of scales. While building on classic approaches, 
the research in this project contributes at a fundamental theoretical level by laying the foundation 
for reliably accurate and efficient numerical solution based on a posteriori error analysis that ac- 
counts for the numerical complexities involved with simulating such systems. This is achieved 
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by combining extremely sophisticated mathematics in analysis and geometry with cutting edge 
numerical methodology. 

The impact of the research related to this project is widespread, as can be seen in the greatly 
increasing levels of activity around the world on such problems. This is also evidenced by the 
number of invitations to speak, the number of funded interdisciplinary projects including a recent 
award of an extremely prestigious National Science Foundation Focused Research Group (FRG) 
award to Estep and Hoist, the citation record (Estep's h-index is 15 and Hoist's h-index is 20), 
and the high level of the involvement of the Pi's in research environment through panels, reports, 
editing, and so on. 

5.2. Impact on other disciplines 

Developing reliable and accurate tools for carrying out predictive science and engineering for 
multiscale, multiphysics systems on complex domains and conducting uncertainty quantification 
in simulated results is the major problem of computational science and engineering at present. 
Addressing this challenge requires fundamental research in the mathematical sciences. This project 
is aimed at addressing a number of key research problems involved with simulating multiphysics 
systems. Along with theory, the Pis systematically implement the results into public software, 
and, along with their collaborators, use the software to tackle scientific and engineering research 
problems. This yields a direct transfer of the theoretical mathematical developments and software 
implementations to the application domain. 

This is evidenced by the large number of interdisciplinary collaborations of the Pis and the 
substantial volume of interactions with Department of Energy laboratories and industry. Details 
are provided below. 

5.3. Impact in the profession 

5.4. Honors and awards 

Estep was appointed (founding) Co-Editor in Chief of the SIAM / ASA Journal on Uncertainty 
Quantification 

Estep won the University Scholarship Impact Award, Colorado State University, 2011 

Estep was appointed University Interdisciplinary Research Scholar, Colorado State University in 
2009 

Estep received the Oliver P. Pennock Distinguished Service Award, Colorado State University in 
2009 

Estep was appointed Editor in Chief, SIAM Book Series on Computational Science and Engi- 
neering, 2009 - 2014 

Hoist received the CSU Distinguished Alumnus Award, 2009 

Hoist was appointed the Chancellor's Associates Endowed Chair in Mathematics and Physics at 
UC San Diego in 2012 

5.5. Impact on the professional research community 

Estep served as one of the Moderators for the SAMSI National SIAM and ASA Town Hall Meet- 
ing on Uncertainty Quantification, 2010 

Estep served as the Co-Organizer and first Chair, SIAM Activity Group on Uncertainty Quantifi- 
cation, 2010 

Estep served as a Program Leader for the SAMSI Program on Uncertainty Quantification, 2011- 
2012 
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Estep served as co-chair of the first SIAM/ASA/USACM Conference on Uncertainty Quantifica- 
tion (April, 2012) 

Estep along with J. Berger (Duke) and M. Gunzburger (FSU) proposed a new Journal on Uncer- 
tainty Quantification to be jointly published by the ASA and SIAM 

Estep serves on the Advisory Board for the Center for Advanced Modeling and Simulation, Idaho 
National Laboratory, 2009 - 2012 

Estep serves on the Governing Board of the Statistical and Applied Mathematical Sciences Insti- 
tute (SAMSI), 2009-2016 

Estep served on the National Science Foundation Office of Cyberinfrastructure Grand Challenges 
Communities Task Force, 2009-2010 (co-author of final recommendation report) 

Estep served as Breakout Lead arid Report co-author, Uncertainty Quantification and Stochastic 
Systems, Department of Energy Cross-Cutting Technologies for Computing at the Exascale, 
2010 

Estep was an invited participant in the Fusion Simulation Program Definition Workshop, 2011 

Estep serves on the American Mathematical Society Simmons Travel Grants Committee, 2011- 
2014 

Estep serves as Moderator, Mathematics in the Geosciences Workshop, Northwestern University, 
2011 

Estep was co-author of Multiphysics Simulations: Challenges and Opportunities, Tech. Report 
ANL/MCS-TM-321, Argonne National Laboratory, 2011 

Estep was co-author of Fostering Interactions Between the Geosciences and Mathematics, Statis- 
tics, and Computer Science, Technical Report TR-2012-02, Department of Computer Sci- 
ence, University of Chicago, 2012 

Hoist serves on the Executive Committee for the San Diego Supercomputer Center (SDSC), 2007- 
present 

Hoist is a Co-Organizer (with R. Bank) of 20th International Conference on Domain Decompo- 
sition (DD20), February 2011. 

Hoist is the Primary Organizer (with J. Hameed): Numerical Methods for Implicit Models in 
Biomolecular Systems, SLAM CS&E Conference Minisymposium, March 2011 

Hoist is the Primary Organizer (with A. Demlow, A. Gillette, Y. Zhu): Workshop on Exploit- 
ing Geometry in the Development of Numerical Methods for Partial Differential Equations, 
UCSD Workshop, San Diego, November 2011. 

Hoist is the Primary Organizer (with A. Demlow, R. Szypowski): Exploiting Geometry in the 
Development of Numerical Methods for Partial Differential Equations, SIAM Analysis of 
PDE Conference Minisymposium, November 2011. 

Hoist is the Primary Organizer (with D. Arnold, A. Gillette): AMS Joint Meeting FEEC Min- 
isymposium, on New Developments in the Finite Element Exterior Calculus, January 2013. 

Hoist is the Primary Organizer (with A. Gillette, R. Szypowski): Workshop on Exploiting Geom- 
etry in the Development of Numerical Methods for Partial Differential Equations II, UCSD 
Workshop, San Diego, January 2013. 

Hoist and Estep regularly serve on Grant Review Panels for NSF and DOE, 2004-present 
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5.6. Professional editorial appointments 

Estep: co Editor in Chief (founding), SIAM / ASA Journal on Uncertainty Quantification 

Estep: Editor in Chief, SIAM Book Series on Computational Science and Engineering, 2009 - 
2014 

Estep: Associate Editor, SIAM Journal on Numerical Analysis, 2005-2011 

Estep: Associate Editor, International Journal for Uncertainty Quantification, 2010- 

Estep: Associate Editor, Multiphysics Modeling Book Series, A. A. Balkema Publishing, CRC 
Press, 2010- 

Estep: Associate Editor, Journal of Applied Mathematics and Computing, 2008-2013 

Hoist: Associate Editor, Numerische Mathematik, 2008-present 

Holst: Associate Editor, SIAM Book Series on Computational Science and Engineering, 2009- 
2014 

5.7. Impact on technology transfer 

The Pis maintain a very substantial interdisciplinary collaboration activity with scientists and 
engineers in universities, Department of Energy laboratories, and industry. These collaborations 
lead to direct injection of research ideas into practical use. 

5.8. Consulting and collaborative activities 

In this section, we report currently funded projects that involve substantial interdisciplinary 
collaborations and transfer of research results related to this project into applications. 

Estep is co-PI on the project Framework Application for Core-Edge Transport Simulations (FACETS) 
funded by the Office of Advanced Scientific Computing Research and Office of Fusion En- 
ergy Sciences, Department of Energy, 2007-12. Collaborators include: R. H. Cohen, L. Di- 
achin, and T. Epperly at Lawrence Livermore National Laboratory; J. Larson and L. Mclnnes 
at Argonne National Laboratory; M. R. Fahey and J. Cobb at Oak Ridge National Laboratory. 
Subject is development and analysis of numerical solution methods for coupled core-edge 
fusion simulations. 

Estep is PI on the project Collaborative Proposal: Transforming How Climate System Models 
are Used: A Global, Multi-Resolution Approach to Regional Ocean Modeling funded by the 
Department of Energy, 2009-11. Collaborators include Todd Ringler at Los Alamos National 
Laboratory. Subject is development and analysis of numerical methods for multiscale ocean 
models. 

Estep is PI on the project Adjoint-based methods for uncertainty quantification funded by the 
Lawrence Livermore National Laboratory, 2010-13. Collaborators are Carol Woodward and 
Jeff Hittinger at Lawrence Livermore National Laboratory. Duties include (1) pursue develop 
a posteriori error estimates for hyperbolic problems including shock behavior and (2) consult 
on uncertainty and error quantification with laboratory personnel 

Estep is co-PI on the project The Inverse Problem for Estimation of Structure of Biological Macro- 
molecules from Small-Angle X-Ray Scattering funded by the National Institutes of Health, 
2010-2014. Collaborators include Jay Breidt (Statistics, CSU) and Karolin Luger (Biochem- 
istry, CSU). Subject is determining the structure of biological macromolecules using small 
angle x-ray scattering data. 
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Estep is PI on the project Enabling Predictive Simulation and UQ of Complex Multiphysics 
PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and 
a-Posteriori Error Estimation Methods funded by the Department of Energy, 2010-2013. 
Collaborators include John Shadid (Sandia Nat. Lab.) and Victor Ginting (U. Wyom.). 
Subject is developing a posteriori error estimates for solutions of reacting flow and fusion 
reaction models. 

Estep is co-PI on the project Collaborative Research: A posteriori error analysis and adaptiv- 
ityfor discontinuous interface problems funded by the National Science Foundation, 2010- 
2013. Collaborator is Simon Tavener (CSU). Purpose is developing and analyzing conser- 
vative solution methods for elliptic problems with coefficients that are discontinuous across 
complex interfaces. 

Estep is PI on the CSU Subcontract from Multiscale Design Systems, LLC supported by an 
Air Force SBIR Phase II grant. Collaborators are Simon Tavener (CSU) and Jacob Fish 
(Columbia Uni.) in 2011. Purpose is developing fast methods for UQ for multiscale models 
of polymers in stressed environments. 

Estep is PI on the project Uncertainty Analysis for Multiscale Models of Nuclear Fuel Perfor- 
mance supported by the Idaho National Laboratory from 2011-2014. Collaborators are Si- 
mon Tavener (CSU) and Michael Pernice (Idaho Nat. Lab.). Purpose is UQ for multiscale 
models of nuclear fuel. 

Estep is PI on the project 11-2031: Multiscale modeling and uncertainty quantification for 
nuclear fuel performance, Nuclear Energy University Programs, Department of Energy, 
2011-14. Collaborators are Simon Tavener (CSU), Michael Pernice (INL), Peter Polyakov 
(Wyoming), Dongbin Xiu (Purdue), Anter el Azab (Purdue) 

Estep is a co-PI on the project Data-Driven Inverse Sensitivity Analysis for Predictive Coastal 
Ocean Modeling, Computational and Data-Enabled Science and Engineering in Mathemati- 
cal and Statistical Sciences (CDS&E-MSS), National Science Foundation, 2012-15. Collab- 
orators are Troy Butler (CSU), Clint Dawson (U. Texas at Austin), and Joannes Westerink 
(Notre Dame) 

Estep and Hoist are co-PIs on the project FRG: Error Quantification and Control for Gravita- 
tional Waveform Simulation funded by the National Science Foundation, 2011-2014. The 
Project is concerned with estimating the error in computed wave forms obtained from LIGO 
data. 

Hoist is Pis on the project FRG: Analysis of the Einstein Constraint Equations funded by the 
National Science Foundation, 2013-2016. The Project is concerned with further extending 
the solution theory for the Einstein constraint equations. 

Hoist is PI on the project MRI: Acquisition of a Parallel Computing and Visualization Facility to 
Enable Integrated Research and Training in Modern Computational Science, Mathematics, 
and Engineering funded by National Science Foundation, 2008-2011. Collaborators include 
Randolph Bank (UCSD Mathematics), Scott Baden (UCSD Computer Science), and John 
Weare (UCSD Chemistry). The subject is the design and construction of a state-of-the-art 
parallel computing system with an excess of 1000 compute nodes, Infmiband high-speed 
network fabric, parallel filesystems, LCD vizualization walls, housed in a modern server 
room with raised floor and forced chilled air. 

Hoist is PI on the project Adaptive Methods and Finite Element Exterior Calculus for Nonlinear 
Geometric PDE, funded by National Science Foundation, 2012-2015. Co-PI is former stu- 
dent and postdoc Ryan Szypowski, now an assistant professor in mathematics at Cal Poly 
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Pomona. The subject is the design and analysis of adaptive methods for use with the finite 
element exterior calculus. 

Hoist is Co-PI on the project Adaptive Radiotherapy Based on High Performance Computing 
funded by the Department of Energy, Lawrence Livermore National Laboratory, and the Uni- 
versity of California, 2009-2012. Collaborators include Steve Jian (UCSD Medical School), 
A. Majumdar (SDSC), and D.J. Choi (SDSC). The subject is realtime solution of coupled 
reaction-diffusion systems and the Boltzmann transport equation using a combination of par- 
allel algorithms for partial differential equations, high-speed communication networks, and 
cluster computers. 

Hoist is Co-PI on the project Scalable Adaptive Multilevel Solvers for Multiphysics Problems, 
funded by the Department of Energy. The subject is the design and analysis of determinstic 
algorithms for use in physical simulation based on multilevel technologies. 

Hoist is Co-PI on the project Applications of Quantum Computing in Aerospace Science and 
Engineering, funded by the AirForce Office of Scientific Research. The subject is the design 
and analysis of quantum algorithms for use in physical simulation. 

Hoist is Co-PI and Core 1A lead on the project National Biomedical Computation Resource 
(NBCR) funded by the National Institutes of Health, 2009-2014. Collaborators include An- 
drew McCammon (UCSD Chemistry), Andrew McCulloch (UCSD Bioengineering), Mark 
Ellisman (UCSD Medical School), and Peter Arzberger (SDSC). The subject is multiscale 
modeling frameworks and adaptive finite element methods for complex multiscale and mul- 
tiphysics problems arising in biomedical science. 

Hoist is Senior Scientist and founding member of the NSF Physics Frontier Center for Theoret- 
ical Biological Physics (CTBP), funded by the National Science Foundation. Collaborators 
include Jose' Onuchic (UCSD Physics), Andrew McCammon (UCSD Chemistry), and Andy 
Kümmel (UCSD Chemistry). The subject is multiscale modeling frameworks and adaptive 
finite element methods for complex multiscale and multiphysics problems arising in bio- 
physics. 

5.9.    Transitions to technology applications 

We report on current interactions with industry. 

Estep was a Co-Principal Investigator in the Tech X, Inc. project Framework Application for 
Core-Edge Transport Simulations (FACETS), funded by the Office of Advanced Scientific 
Computing Research and Office of Fusion Energy Sciences, Department of Energy. Estep's 
responsibilities include development and analysis of numerical solution methods for coupled 
core-edge fusion simulations. Algorithms developed in this program will be implemented 
into the FACETS high performance framework. 

Estep was a subcontract in Phase II project for Multiscale Design Systems, LLC (Principal Officer: 
Jacob Fish, Rensselaer Polytechnic Institute) for the Air Force SBIR/STTR program. Es- 
tep's responsibilities include development of multiscale operator decomposition numerical 
methods and numerical methods for error estimation, uncertainty quantification and inverse 
problems for parameter identification for multiscale multiphysics models of hygro-thermo- 
mechano-oxidation-fatigue in polymer matrix composites used in aircraft applications. Al- 
gorithms developed in this program will be implemented into the Multiscale Design Sys- 
tem for Continuum (MDS-C) and the Multiscale Design System for Discrete or atomistic 
medium (MDS-D) software packages. 
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Holst is collaborating with Eric Bylaska at Pacific Northwest National Laboratory on the incorpo- 
ration of the Finite Element Toolkit (FETK, developed and maintained by the Hoist Group) 
into several density functional modeling packages based at PNNL. 
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PERTURBED ELLIPTIC PROBLEMS I: COMPUTATIONAL 

METHODS, A POSTERIORI ANALYSIS, AND ADAPTIVE ERROR 
CONTROL* 
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Abstract. We consider the nonparametric density estimation problem for a quantity of interest 
computed from solutions of an elliptic partial differential equation with randomly perturbed coef- 
ficients and data. Our particular interest are problems for which limited knowledge of the random 
perturbations are known. We derive an efficient method for computing samples and generating an 
approximate probability distribution based on Lion's domain decomposition method and the Neu- 
mann series. We then derive an a posteriori error estimate for the computed probability distribution 
reflecting all sources of deterministic and statistical errors. Finally, we develop an adaptive error 
control algorithm based on the a posteriori estimate. 

Key words, a posteriori error analysis, adjoint problem, density estimation, domain decom- 
position, elliptic problem, Neumann series, nonparametric density estimation, random perturbation, 
sensitivity analysis 
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1. Introduction. The practical application of differential equations to model 
physical phenomena presents problems in both computational mathematics and statis- 
tics. The mathematical issues arise because of the need to compute approximate so- 
lutions of difficult problems, while statistics arises because of the need to incorporate 
experimental data and model uncertainty. The consequence is that significant error 
and uncertainty attend any computed information from a model applied to a con- 
crete situation. The problem of quantifying that error and uncertainty is critically 
important. 

We consider the nonparametric density estimation problem for a quantity of in- 
terest computed from the solutions of an elliptic partial differential equation with ran- 
domly perturbed coefficients and data. The ideal problem is to compute a quantity 
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of interest Q(U), expressed as a linear functional, of the solution U of 

-v• (A(i)vt/) = G{x),  x en, 
'11) 1 U = 0, x 6 8Q, 

where n is a convex polygonal domain with boundary dfl, and A(a;) and G(x) are 
stochastic functions that vary randomly according to some given probability structure. 
The problem (1.1) is interpreted to hold almost surely (a.s.), i.e., with probability 1. 
Under suitable assumptions, e.g., A and G are uniformly bounded and have piecewise 
smooth dependence on their inputs (a.s.) with continuous and bounded covariance 
functions and A is uniformly coercive, Q{U) is a random variable. The density estima- 
tion problem is as follows: Given probability distributions describing the stochastic 
nature of A and G, determine the probability distribution of Q. The approach we 
use extends to problems with more general Dirichlet or Robin boundary conditions 
in which the data for the boundary conditions are randomly perturbed as well as 
problems with more general elliptic operators in a straightforward way. 

The parametric density estimation problem assumes that the output distribution 
is one of the standard distributions so that the problem involves determining values 
for the parameters defining the distribution. The nonparametric density estimation 
problem is relevant when the output distribution is unknown and/or complicated, 
e.g., multimodal. In this case, we seek to compute an approximate distribution for 
the output random variable using sample solutions of the problem. A limited version 
of this problem is to seek only to compute one or two moments, e.g., the expected 
value. However, this is of limited utility when the output distribution is complicated, 
as it tends to be for outputs computed from (1.1) under general conditions. 

Nonparametric density estimation problems are generally approached using a 
Monte Carlo sampling method. Samples {A^.G™} are drawn from their distribu- 
tions, solutions {[/"} are computed to produce samples {Q(Un)}, and the output 
distribution is approximated using a binning strategy coupled with smoothing. This 
ideal density estimation problem poses several computational issues, including the 
following. 

1. We have only limited information about the stochastic nature of A and G. 
2. We can compute only a finite number M of sample solutions. 
3. The solution of (1.1) has to be computed numerically, which is both expensive 

and leads to significant variation in the numerical error as the coefficients and 
data vary. 

4. The output distribution is an approximation affected by the binning and 
smoothing strategies. 

In this paper, we consider the first three issues. Our goals are to construct an ef- 
ficient numerical method for approximating the cumulative density function for the 
output distribution and to derive computable a posteriori error estimates that account 
for the significant effects of error and uncertainty in the approximation. We fully de- 
velop the adaptive algorithm, extend the analysis to include adaptive modeling, and 
test the algorithm on several problems in [5]. In [3], we present convergence proofs 
for the method described in this paper. There are many papers addressing the fourth 
issue in the statistics literature, e.g., kernel density estimation. 

Our main goal is to treat the effects of stochastic variation in the diffusion co- 
efficient A. The treatment of a problem in which just the right-hand side and data 
vary stochastically is somewhat easier because there is just one differential operator 
to be inverted. When the elliptic coefficient varies stochastically, we are dealing with 
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a family of differential operators. We include a brief treatment of stochastic variation 
in the right-hand side and data to be complete. 

1.1. Some notation. The notation is cumbersome since we are dealing with two 
discretizations: solution of the differential equation and approximation of a probability 
distribution by finite sampling. Generally, capital letters denote random variables, or 
samples, and lowercase letters represent deterministic variables or functions. When 
this assignment is violated, we use italics to denote deterministic quantities. We 
let, fi c Rd, d = 2,3, denote the piecewise polygonal computational domain with 
boundary <9fi. For an arbitrary domain u> C fi we denote the L (ui) scalar product 
by {v,w)u = J^vwdx in the domain and (■u,w)au; = J9wvwds on the boundary, 
with associated norms || H^ and | |u. When w = fi, we drop the index in the scalar 
products. We let H3(ui) denote the standard Sobolev space of smoothness s for s > 0. 
In particular, Ho(fi) denotes the space of functions in H1(n) for which the trace is 0 
on the boundary. If u = fi, we drop ui, and also if s = 0, we drop s; i.e., || ■ || denotes 
the L2(fi)-norm. 

We assume that any random vector X is associated with a probability space 
(A, B, P) in the usual way. We let {Xn, n = 1,... ,7V"} denote a collection of sam- 
ples. We assume it is understood how to draw these samples. We let E{X) denote 
the expected value, Var(X) denote the variance, and F(t) = P(X < t) denote the 
cumulative distribution function. We compute approximate cumulative distribution 
functions in order to determine the probability distribution of a random variable. 

1.2. A modeling assumption. The first step in developing a numerical method 
for the density estimation problem is to characterize the stochastic nature of the 
random variations affecting the problem. We assume that the stochastic diffusion 
coefficient can be written 

A = a + A, 

where the uniformly coercive, bounded deterministic function a may have multiscale 
behavior and A describes a relatively small stochastic perturbation. Specifically, we 
assume that a(x) > üQ > 0 for x e fi and that |^4(a:)| < 5a(x) for some 0 < 6 < 1. 

As a modeling assumption, we assume that A is a piecewise constant function 
with random coefficients. Specifically, we let K, be a finite polygonal partition of fi, 
where fi = UKejtK and K.\ and K2 either are disjoint or intersect only along a common 
boundary when «i ^ «2- We let x« denote the characteristic function for the set 
K £ /C. We assume that 

(1.2) A(x) = £ A« XK(X),    xefi, 

where (AK) is a random vector and each coefficient AK is associated with a given 
probability distribution. We illustrate such a representation in Figure 1.1. Improving 
the model under this assumption requires choosing a finer partition and taking more 
measurements AK; see [5]. 

Note that we do not assume that the coefficients of A are independent and/or 
uncorrelated. We assume only that it is possible to draw samples of the values. We 
denote a finite set of samples by {An'K, n = 1,..., A/"}. There are a few situations in 
which this is reasonable; e.g., see the following. 

• There may be a component of the diffusion coefficient and/or its error that 
can be determined experimentally only at a relatively small set of points in 
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FlG. 1.1. Illustration of the modeling assumption (1.2). The unit square is partitioned into 
9x9 identical squares. The diffusion coefficient a is 0.1 on the "cross"-shaped domain centered at 
the origin and 1 elsewhere. The random perturbations are uniform on the interval determined by 
±10% of the value of a. 

the domain fi.   For example, consider the SPE10 comparative oil reservoir 
simulation project description in [6]. In the absence of more information, it is 
natural to build a piecewise constant description of the measured information. 

• We may assume or have knowledge of global distribution governing the ran- 
dom perturbation and simply represent realizations of the perturbation as 
piecewise constant functions with respect to a given domain partition. 

We show below that assuming a spatially localized, piecewise constant description 
for A provides the possibility of devising a very efficient density estimation algorithm. 
In [3], we treat the situation in which A is a piecewise polynomial function, and 
in particular A may be continuous.  An alternative, powerful approach to describe 
random behavior is based on the use of Karhunen-Loeve, polynomial chaos, or other 
orthogonal expansions of the random vectors [7, 1], which provides a spatially global 
representation. However, this approach requires detailed knowledge of the probability 
distributions for the input variables that is often not available. 

2. The case of a randomly perturbed diffusion coefficient. We begin by 
studying the Poisson equation with a randomly perturbed diffusion coefficient. We 
let U € Hl{ü) (a.s.) solve 

(2.1) 
-V-AW = /,   xeQ, 

u = o, z in an, 

where / € L2($7) is a given deterministic function and A = a + A satisfies the condi- 
tions described in section 1.2. We construct an efficient numerical method for com- 
puting sample solutions and then provide an a posteriori analysis of the error of the 
method. 

2.1. More notation. We use the finite element method to compute numerical 
solutions. First, some general notation is as follows: Let Th = {T} be a quasi-uniform 
partition into elements that UT = $7. Associated with Tn, we define the discrete finite 
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element space Vh. consisting of continuous, piecewise linear functions on T satisfying 
Dirichlet boundary conditions, with mesh size function hT = diam(r) for x G r and 
h = maxT-gTh^T- In some situations, we use a more accurate finite element space 
Vjj either comprising the space of continuous, piecewise quadratic functions V% or 
involving a refinement T-h of %., where h <gih. 

Our approach uses Lion's nonoverlapping domain decomposition method [9, 8]. 
Again, some general notation is as follows: We let {fid, d = 1,..., V) be a decompo- 
sition of fi into a finite set of nonoverlapping polygonal subdomains with Ufid = fi- 
We denote the boundaries by c*fid and outward normals by nd. For a function A" on 
fi, An'd means An restricted to fid- For d = 1,..., V, d' denotes the set of indices in 
{1, 2,..., V} \ {d} for which the corresponding domains fi^ share a common bound- 
ary with fij. The method is iterative, so for a function U involved in the iteration, 
Ui denotes the value at the ith iteration. Let An = a + An be a particular sample of 
the diffusion coefficient with corresponding solution Un. We let {UQ' , d = 1,... ,£>} 
denote a set of initial guesses for solutions in the subdomains. 

2.2. The computational method. Returning to (2.1), we assume that the 
finite element discretization 7^ is obtained by refinement of K. associated with the 
modeling assumption (1.2) on A. This is natural when the diffusion coefficient a and 
the data vary on a scale finer than the partition /C. 

Given the initial conditions, for each i > 1, we numerically solve the V problems 

•V • hnVU?>d = /, x G fid, 

U?'d = 0, x G 3fid n 3fi, 

$U? 'd + nd • KnVU?4 = \U?l\ - nj • AnVf/^f,    ieffl,,n dfij,    d G d', 

where the parameter A G R is chosen to minimize the number of iterations. In prac- 
tice, we compute X iterations. Note that the problems can be solved independently. 

To discretize, we let Vh,d C H.Q an(^d) be a finite element approximation space 
corresponding to the mesh Td on fid, where 

Wä.an(^d) = {v G H\nd) :  u|flnDnsn = 0}. 

We let (■,•)'' denote the L2(fid) scalar product, (-,-}d denote the L2(<9fid) scalar 
product, and (■, -)dnd denote the L2(dQ,d Pi <9fij) scalar product for d G d'. The first 
two inner products are associated with norms || \\d and | |d, respectively. For each 
i > 1, we compute £/"'   G Vh,d, d= l,...,V, solving 

(2.2)    (AnVU?'d,Vv)d + j(U?-d,v)d 

d€d' 

It is convenient to use the matrix form of (2.2). We let {<^, m — L ■ • ■. nd} be 

the finite element basis functions for the space Vh.d, d = 1,..., V. We let t/™' denote 
the vector of basis coefficients of £/"'   with respect to {<^}. On each domain fid, 

(ka,d + kn,d^n,d = £d(/) + gn.ci ^n _ yng^ 
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where 

(ka'd)lk = (aVtf,V<pd
k)d + ±(vf,4)d, 

(kn'd)lk = (An'dV<pt,V<pi)d, 

(bdh = (f,-A)d, 

for 1 < I and k < nd. We abuse notation mildly by denoting the dependence of the 

data bn'd(An, U™J_i ) on the values of U™Z\ for d £ d!. We summarize this approach in 
Algorithm 1. 

Algorithm 1. MONTE CARLO DOMAIN DECOMPOSITION FINITE ELEMENT METHOD 

for n = 1,... ,Af (number of samples) do 
for i = 1,..., T (number of iterations) do 

for d = 1,..., D (number of domains) do 
Solve 
Solve (ka<d + kn>d)U^d = bd{f) + b"<d(An, U^i). 

end for 
end for 

end for 

Unfortunately, this algorithm is expensive for a large number of realizations since 
each solution Un requires the solution of a discrete set of equations. To construct a 
more efficient method, we impose a restriction on the domains in the decomposition. 
We assume that each domain Qd is contained in a domain n in the partition K. used 
in the modeling assumption (1.2). This implies that the random perturbation An'd is 
constant on each Qd; i.e., it is a random number. Consequently, the matrix kn'd has 
coefficients 

(kn'd)lk = (An>dV<pf, V^)d = An>d(VVf, \74)d = An-d(kd)lk, 

where kd is the standard stiffness matrix with coefficients (kd)ik = {V<pf, Vipd)d. We 
now use the fact that An'd is relatively small to motivate the introduction of the 
Neumann series. Formally, the Neumann series for the inverse of a perturbation of 
the identity matrix provides 

(ka'd + An<dkd)~l = (ka-d(id + An'd(ka>d)-lkd))~l 

= (id + ,4n't'(ka't/)-1kti)"1 (k^)-1 

OO 

= ]T(-/i"<d)p((ka'd)-1kd)r,(kQ'<')-1, 
p=0 

where id is the identity matrix. We compute only V terms in the Neumann expansion 
to generate the approximation 

•p-i 

(2.3)      0$ = J2 ((->ln'd)p((ka'd)-1kd)p) (ka'd)-1(6d(/) + bn'd(An,^;f_1)). 
p=0 
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We discuss the convergence as V —» oo in detail below. 
Note that bn,d is nonzero only at boundary nodes. If W/,^ denotes the set of 

vectors determined by the finite element basis functions associated with the boundary 
nodes on Clj,, then bn'd is in the span of Wh,d- We can precompute 

((ka'd)-1kd)P(k°>'i)-1WM 

efficiently, e.g., using Gaussian elimination. This computation is independent of n. 

Algorithm 2. MONTE CARLO DOMAIN DECOMPOSITION FINITE ELEMENT METHOD 

USING A TRUNCATED NEUMANN SERIES  

for d = 1,..., D (number of domains) do 
for p — 1,..., V (number of terms) do 

Compute y = ((ka'd)-1kd)p{ka-d)-1bd{f) 

Compute yp = ((k0'd)-1kd)p(ka'd)-1WM 

end for 
end for 
for i = 1,... ,2 (number of iterations) do 

for d = 1,..., D (number of domains) do 
for p = 1,..., V (number of terms) do 

for n = 1,..., Af (number of samples) do 

Compute Ütf = E^'of-^'W^A", Upf-J + v) 
end for 

end for 
end for 

end for 

Combining this with Algorithm 1, we obtain the computational method given in 
Algorithm 2. We let f/p'j denote the finite element functions determined by Upj- for 
n= 1,...,AA andd= 1,'.... ,£> 

rn,d 
We let Up j denote the finite element function which 

is equal to Uy,'x on Cld- 
Remark 2.1. Note that the number of linear systems that have to be solved in 

Algorithm 2 is independent of N. Hence, there is potential for enormous savings when 
the number of samples is large. 

2.3. Convergence of the Neumann series approximation. It is crucial 
for the method that the Neumann series converges. The following theorem shows 
convergence under the reasonable assumption that the random perturbations An'd to 
the diffusion coefficient are smaller than the coefficient. We let |||v|||^ = ||Vv||^ + £|v|^ 
for some e > 0. We define the matrices c",d = —•An,d(ka,d)~1kd and denote the 
corresponding operators on the finite element spaces by cn,d : Vh,d —* Vh,d- 

THEOREM 2.1. Ifi) = |max{/ln'd}/ao| < 1, then 

(2.4)      (a) (id-c".d)-1=£(c".y, 

P-i 
(2.5)      (b) 

for any v e Vh,d 

(i-^r-EMl» 
p=0 

< 
l-7f 

p=0 
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Proof.   Let z = cn,dw for an arbitrary w S Vh,d-   From the definition of cn,d, 
z G Vk,d satisfies 

(2.6) (aVz, Vv)d + j(z, v)d = -An-d(Vw, Vv)d 

for all v 6 Vh,d-  Choosing v — z in (2.6) and using the Cauchy-Schwarz inequality 
yields 

l|v«||3 + ^|«i3<»7l|vHldl|Vz||nd. 

Choosing e < 2/(Aao) in the definition of the norm |||v|||j = ll^lld + ^ld an<^ making 
standard estimates gives 

\\\z\\\2d<V2\\Vw\\d<r,2\\\w\\\d. 

(cn'd)Pw\\\d<VP\\\w\\\d. 

By induction, 

(2.7) 

In particular, (cn,d)p —> 0 as p —> co. 
We take the limit as T5 tends to infinity in the identity 

•p-i 
id - (cn-df = (id - c"-d) £ (c"-d)p 

p=0 

to obtain (2.4). 
In order to prove (b) we note that 

V-l oo 

(id - c"^)-1 - £ (c^)" = £ (c^)p = {c^df(id - c"'d)_1. 
P=O P=-p 

In the finite element context, for v 6 V^](i, 

•P-i 

{i-cn'dy1v-J2(cn'd)Pv 

p=0 

= lll(c".Y(i-^)-1HlL<^|||(i-c-rf 
)-\\ 

V-l 

(1 - cn>d)-\, - J2 {cn'd)Pv <rf     Y,{cn>d)Pv      + „' 
p=0 d p=0 

The theorem follows immediately.       D 

2.4. A numerical example. We present a numerical example that illustrates 
the convergence properties of the proposed method. Below, we derive an a posteri- 
ori estimate for the contributions to the error of the approximation and develop an 
adaptive algorithm that provides the means to balance these contributions efficiently. 

In this example, we partition the unit square into 9x9 equal square subdomains 
for the domain decomposition algorithm. The coefficient An = a + An, where a and 
An are piecewise constant on the 9x9 subdomains. The diffusion coefficient a is equal 
to 1 except on a cross in the center of the domain fi where it is equal to 0.1. The 
random perturbations are uniform on the interval determined by ±10% of the value 
of a. We illustrate a typical sample in Figure 1.1. The data is / = 1. We estimate 
the error in the quantity of interest which is the average of the solution. 
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FlG. 2.1. Left: convergence in mesh size as the numbers of domain decomposition iterations 
and terms in the Neumann series are held constant. Middle: convergence with respect to the number 
of domain decomposition iterations as the mesh size and number of terms in the Neumann series 
are held constant. Right: convergence with respect to the number of terms in the Neumann series 
as the mesh size and number of domain decomposition iterations are held constant. 

2.4.1. Convergence for a single realization. First, we consider a single sam- 
ple An in order to focus on the convergence with respect to mesh size, number of 
iterations, and number of terms. In particular, we study how the accuracy of a com- 
puted linear functional of the solution (£/p'j, t/1) depends on the three parameters h, 
V, and X. To compute approximate errors, we use a reference solution with h = 1/72, 
I = 300, and V = 5. 

We start by letting I = 300 and V = 5, and let the number of elements in each 
direction (l//i) vary from 18 to 72; i.e., the total number of nodes in the mesh varies 
from (18 + l)2 = 361 to (72 + l)2 = 5329. In Figure 2.1, we plot the relative error 
as the mesh size decreases. Next, we fix \/h = 72, keep V = 5, and vary J from 10 
to 300. In Figure 2.1, we plot the relative error as the number of iterations increase. 
Finally, we let l//i = 72, I = 300, and V vary from 1, 3, and 5. Here, the reference 
solution is computed using V = 7. We plot the results in Figure 2.1. 

2.4.2. Convergence with respect to number of samples. Next, we fix the 
spatial discretization and experimentally investigate the accuracy in the cumulative 
distribution function as a function of the number of samples. Following the problem 
in section 2.4.1, we fix h = 1/72, I = 300, and V = 5, vary Af from 30 to 480, and 
compute the cumulative distribution function F/v(0- We present the result in Fig- 
ure 2.2. We observe that the distribution function becomes smoother as the number 
of samples increases and appears to converge. 

To approximate the error as the samples increase, we compute a reference solution 
using Af = 480. We plot the errors in Figure 2.3. The error decreases significantly 
between Af = 30 and Af = 240, but the convergence is fairly slow. 

2.5. A posteriori error analysis of sample values. We next derive an a 
posteriori error estimate for each sample linear functional value (Un,ip) [4, 2]. We 
introduce a corresponding adjoint problem 

(2.8) 
-V ■ AV$ = yj,   led, 

$ = o, leSfi. 

We compute Af sample solutions {$n,n = 1,...,/^} of (2.8) corresponding to the 
samples (A",n = 1,... ,7V}. 
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0.042      0.O44      0.046      0.04«       0.1 

FIG. 2.2. Convergence in the number of samples as the mesh, the number of domain decompo- 
sition iterations, and the number of terms in the Neumann series are held constant. Plots from left 
to right, top to bottom, M = 30,60,120,480. 

0.04     0.042    0.044    0.046   0.048    0.05 0.04     0.042    0.044   0.046    0.048    0.05 

FIG. 2.3. Error in the distribution function compared to a reference solution as the mesh, the 
number of iterations, and the number of terms are held constant. Plots from left to right, top to 
bottom, M = 30,60,120, 240. 

To obtain computable estimates, we compute numerical solutions of (2.8) using 

Algorithm 2. We obtain numerical approximations {^ f, d= 1,..., V} using a more 

accurate finite element discretization computed using either the space of continuous, 
piecewise. quadratic functions V\ or a refinement T~h of 7^, where h <S h. We denote 
the approximation on Q. by $£ ^. 
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THEOREM 2.2. For each n el,...,M, 

(2.9) | {Un - Ufa, i>) | < | (/, 9 fa) - (A" W£, x, V*^ j) | + ft (ft, P, J), 

tu/iere 

I 0(/I ),    T^ is a refinement ofT^. 

Proof. With $ solving (2.8), the standard Green's function argument yields the 
representation 

(Un -Ufa,*) = (/,*») - (AnVUfa,VQn). 

We write this as 

{Un - Ufa,*) = {/,*fa) - {AnVUfa,V<l>fa) 

+ ((/,$n - *fa) - (AnVUfa,V($n - tfa))^ 

and define 

(2.10) n{h,V,i) = (/,*" -*^j) - (AnVL^z,V(#n -$£±)). 

We introduce auxiliary adjoint problems for the purpose of analysis. Let Tn € V 
solve 

(2.11) (A"Vr\ Vv) = (f,v) - (AnVUfa,v) for all v 6 V, 

corresponding to the quantity of interest (/, $) — (A"Vt/p x, $"). The standard 
Green's function argument yields 

(/, $" - $£ t) - (hnVUfa, *n - $£ f) = (T'\ V) - (AnVT'\ V*^f). 

Using $n i to denote the approximate solution obtained by using the complete Neu- 

mann series (which is equivalent to finding the solution of the problem with the full 
diffusion coefficient), we have 

(2.12) (/, $n - *£ j) - (AnVt/£]X, $n - $£ ±) = (Tn, V) - (AnVTn, V$^ f) 

+ (A"VT",V(^I-$^j)). 

By Theorem 2.1, the third term on the right-hand side can be made arbitrarily small 
by taking V large. We can use Galerkin orthogonality on the first two terms on the 
right-hand side of (2.12) by introducing a projection ir^ into V-h. Decomposing into a 
sum of integrals over elements and integrating by parts on each element, we have 

(T-, i>) - (A"VTn, V*^) = (Tn - 7rsT
n,tf) - (A"V(T" - HTn), V$^) 

= E ((Tn-^T",^T + (T"-7rÄT",V-A'lV$^i)T 

rZTh \ 

+ <T»-7rÄT»1A»Sri*^j>flT), 

where ön denotes the normal derivative to 3r. The standard argument involving 
interpolation estimates now yields the bounds in (2.10).       D 
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2.5.1. Numerical example. We present a brief example illustrating the accu- 
racy of the a posteriori estimate (2.9). We consider just one sample diffusion value 
A1 = a + A1, with a = 0.9 and A1 = 0.1 on the unit square. We compute the error 
in the average value by choosing ip = 1. We set / = 2 • x{\ — x) + 2 • j/(l — y) so that 
the exact solution is U1 — x(l — x) ■ y(l - y) and (U1, ip) = 1/36. 

We divide the computational domain into 8x8 equally sized squares on which 
we compute the numerical approximation to Ul using Lion's domain decomposition 
algorithm with X iterations using the approximate local solver involving a truncated 
Neumann series of V terms. We let h = 1/32 so that each subdomain has discretization 
5x5 nodes. To solve the adjoint problem, we use a refined mesh with h = h/2 and 
use 7'P terms in the truncated Neumann series and 7X iterations in the domain 
decomposition algorithm, where 7 > 0. To evaluate the accuracy of the estimate, we 
use the efficiency index 

We start by letting 7 = 2; i.e., we put a lot of effort into solving the adjoint 
solution. We present results for varying 1 and V in Table 2.1. 

TABLE 2.1 
Efficiency index results for 7 = 2. 

V I Ratio V I Ratio 
1 50 0.992 3 10 2.78 
2 50 1.03 3 25 1.02 
3 50 1.01 3 50 1.01 

Next, we let 7 = 0.5; i.e., we use much poorer resolution for the adjoint solution. 
We plot the results in Table 2.2. 

TABLE 2.2 
Efficiency index results for 7 = .5. 

V I Ratio V I Ratio 
1 50 0.908 3 10 8.21 
2 50 1.00 3 25 1.08 
3 50 0.933 3 50 0.933 

The efficiency indexes are close to one except when the number of domain de- 
composition iterations for the adjoint problem is very low. In general, it appears 
that as long as the number of domain decomposition iterations is sufficiently large, 
the adjoint problem can be solved with rather poor resolution, yet we still obtain a 
reasonably accurate error estimate. 

3. The case of random perturbation in data. For the sake of completeness, 
we treat the case in which the data G in (1.1) is randomly perturbed. It is straight- 
forward to combine the cases of randomly perturbed diffusion coefficient and data. 
We present a fast method for computing samples of a linear functional of the solution 
given samples of the right-hand side data. It is straightforward to deal with a more 
general elliptic operator, so we let U € 7ig(Q.) (a.s.) solve 

(3.1) a(U,v) = {G{x),v),     veHJ(fi), 

where 

a(w, v) = (aVw, Vv) + (b ■ Vw, v) + (cw, v) 
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for w, v £ fto(n), G{x) e L2(n) (a.s.), G(-) has a continuous and bounded covariance 
function, and a, b, and c are deterministic functions chosen such that (3.1) has a 
unique weak solution in 7^J(ft). In particular, a(x) > a0 > 0 for all x. We let 
{Gn(x), n = 1,..., Af} denote a finite collection of samples. 

3.1. Computational method. In the case of randomly perturbed right-hand 
side and data, we can use the method of Green's functions to construct an efficient 
method for density estimation. We introduce a deterministic adjoint problem. We 
let the quantity of interest be a linear functional Q(v) — (v, ip) determined by a func- 
tion ij) G L2(fi) and construct the corresponding adjoint problem for the generalized 
Green's function <p 6 ?ig(fi), 

(3.2) at(<ß,v) = (ip,v),    ueWä(n), 

where 

a*(w, v) = (Vw, Vv) — (V • {bw), v) + (cw, v). 

It immediately follows that 

(Un,i>) = a*{<t>>U
n) = a{Un,<t>) = (G",0) 

for n = 1,... ,M- By linearity, we see that E(U) e Ho(fJ) solves 

a(E(U),v) = (E(Gn),v),    «eHj(n), 

and we can obtain an analogous representation. We conclude that the classic Green's 
representation holds. 

THEOREM 3.1. For samples {Gn,n= 1,...,M}, we have 

(3.3) {Un,i>) = (GnA) 

for n = 1,..., Af.  We also have 

(3.4) E((U,1>)) = (E(G),<P). 

The point is that, theoretically, instead of solving a partial differential equation 
for each sample in order to build the distribution of (Un,ip), we can solve one de- 
terministic problem to get <fr and then calculate values of (Un,tp) using a relatively 
inexpensive inner product. Indeed, we never approximate Un in order to estimate the 
samples of the quantity of interest in this approach. 

In order to make this approach practical, we introduce a finite element approxi- 
mation 4>h £ Vh satisfying 

(3.5) a"Wfc,«) = (lM),     «£Vh. 

We obtain the computable approximations 

(3.6) (tfn,tf)*(0h,CB), 

(3.7) E{{U^))^{E{G),4>h). 
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3.2. A posteriori error estimate for samples. We next present an a posteri- 
ori error analysis for the approximate value for each sample (Un, ip) and for E[(U, ip))- 
For samples, the error is 

(Un,1>) - (Gn, <(>h) = (C, <f>) -{Gn,4>h) = (Gn, </>h-4>). 

For each sample, this is a quantity of interest for <f> corresponding to Gn. To avoid 
confusion, we let @n 6 "HQ(Q) denote the forward adjoint solution solving 

(3.8) a{Gn,v) = (Gn,v),    «6Hj(n). 

Note that because we treat a linear problem, Bn = Un.   Similarly, we let E(Q) € 
Hj(fi) solve 

(3.9) a{E(G),v) = (E(G),v),     veHl
0{Sl). 

The standard analysis gives 

(Gn, 4>h - <t>) = a(9n, <t>h-4>)= a*(<ph - </>, 9n) 

= a*(4>h, 0") - a*(<t>, Qn) = a'(<f>h, 0n) - (i>, Gn) 

= a*{cf>h, (I - nh)Qn) - (1>, (I - 7r,,)en), 

where the last step follows from Galerkin orthogonality.  We can argue similarly for 
E{(Gn,<j>h-f)). 

To use this representation, we need to solve the forward adjoint, problem (3.8) in 
V,-. Unfortunately, in the case of the error of the samples, this requires computing 
n approximate forward adjoint solutions 0n using a more expensive finite element 
computation. Another approach is simply to approximate (Gn, (p) by (Gn, (pfj, where 
<pj is a finite element approximation of <p in Vr. An analysis of the accuracy of this 
replacement follows easily from the relation 

(C'\ <ph-<t>) = (Gn, <t>h - 4>h) + (Cn, <ph - <j>). 

In either case, arguing as for Theorem 2.2 yields the following. 
THEOREM 3.2.  The solution error in each sample is estimated by 

(3.10) (Gn, 4>k-<P)~ a'{4>h, (I - nh)Qn) - ty, (/ - *h)Qn), 

where Gn is a finite element approximation for the adjoint problem (3.8) in V;-  and 
iTh denotes a projection into the finite element space V/,.  We also have 

(3.11) {Gn,<j>h-c!>)~{Gn,<t>h-<p-h), 

where 4>h is a finite element solution of the adjoint problem (3.2) computed in V^. 
We also have the estimates 

(3.12) E{(Gn, <t>k - <t>)) « a*(<j>h, (I - 7Th)E(Q)) - (i>, (I - *h)E(e)), 

where E(Q) is a finite element approximation for the adjoint problem (3.9) computed 
on a finer mesh T-h or using V%.   We also have 

(3.13) E{(G, <ph - 4>)) ~ (E(G), <t>h - 4>h). 

The error of these estimates is bounded by Ch3 or Ch2. In both cases, these 
bounds are asymptotically smaller than the estimates themselves. 
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4. A posteriori error analysis for an approximate distribution. We now 
present an a posteriori error analysis for the approximate cumulative distribution func- 
tion obtained from M approximate sample values of a linear functional of a solution 
of a partial differential equation with random perturbations. 

We let U = U(X) be a solution of an elliptic problem that is randomly perturbed 
by a random variable X on a probability space (tt,B. P), and Q{U) = (U,ip) be a 
quantity of interest for some ifi 6 L2{P<)- We want to approximate the probability 
distribution function of Q = Q(X), 

F(t) = P{{X : Q(U(X)) < t}) = P(Q < t). 

We use the sample distribution function computed from a finite collection of approx- 
imate sample values {Qn,n = 1,... ,7V} = {{Un,ip),ri = 1,... ,A/"}: 

where / is the indicator function. Here,!/" is a numerical approximation for a true 
solution Un corresponding to a sample Xn. We assume that there is an error estimate 

Qn-QnKEn,  . 

with Qn = (Un,ip). We use Theorem 2.2 or 3.2, for example. 
There are two sources of error: 

1. finite sampling, 
2. numerical approximation of the differential equation solutions. 

We define the sample distribution function 

/w(0 = ^ £/(<?" <0 

and decompose the error 

(4.1) \F(t) - FM(t)\ < \F(t) - FM(t)\ + |^(t) - Fu(t)\ =1 + 11. 

There is extensive statistics literature treating /; e.g., see [10]. We note that F/j 
has very desirable properties; e.g., see the following. 

• As a function of t, F^/(t) is a distribution function, and for each fixed t, F^/(t) 
is a random variable corresponding to the sample. 

• It is an unbiased estimator, i.e., E(Fj^) = E(F). 
• NFtf(t) has exact binomial distribution for A/ trials and probability of success 

F(t). 
• Var(FAf(£)) = F(t)(l — F(t))/Af —> 0 as N —► oo, and F^/ converges in mean 

square to F as M —» oo. 
The approximation properties of F^it} can be studied in various ways, all of 

which have the flavor of bounding the error with high probability in the limit of large 
M. One useful measure is the Kolmogorov-Smirnov distance 

sup\FM(L)-F(t)\. 
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A result that is useful for being uniform in t is that there is a constant C > 0 such 
that 

P[ sup |Fjv(t) - F(t)\ > £) < Ce-2'2^    for all e > 0; 

see [10]. We rewrite this as for any e > 0, 

Me"1) 
\r\f\t) -fW|i   | 

teR 
(4-2) sup|Fv(i)-F(0|<v     2V 

1/2 

with probability greater than 1 — e. 
Another standard measure is the mean square error (MSE), 

MSF(0) = F((0-0)2), 

where 0 is an estimator for 0. We define 

^(0 = (1>   Qn<t' m-l1'   Q<t' 
10,    otherwise, 0,    otherwise. 

We have 

For all t, 

1   M 

AT   , 
Tl— 1 

(4.3) w^(j7 £*>(*))=£.    a2 = F(t)(l-F(t)). 

We can also estimate the (unknown) variance by denning 

i    "  / i    M \2 

^ = Ä7E ^w-T7E^(0 
71=1      v 71=1 

Sjy- is a computable estimator for cr2 and 

(4.4) MSE(SZr)=
2-^±±o\ 

Another useful result follows from the observation that {Xn} are independently 
and identically distributed Bernoulli variables. The Chebyshev inequality implies that 
for e > 0, 

(4.5)       p(ßW)-^E^)  <( 
^ 71=1 ^ 

mizimx ,,,_«, €>0. 

To obtain a computable estimate, we note that 

F(t)(l - F(0) = Fv(t)(l - FM(t)) + (F(0 - F^(0)(1 - F(t) - F^(i)). 



DENSITY ESTIMATION FOR ELLIPTIC PROBLEMS 2951 

Therefore using (4.5) along with the fact that 0 < F and F/v" < 1> 

1/2 /tp..,t\/1   _ P.,/AUl/2 (F(t)(l-F(t))\l/<      (FM{t){l-FM(t)) 

\ Mt )       -\ Mt 

{     \F(t) - FM(t)\\l - F(t) - FN(t)\\ 

Mt ) 

1/2 

1 < (FM(t)(l - FM(t))\l/2 

- V Mt J       '  2Mt 

We conclude 
(4.6) 

1    N 

< WOO - JV(0) 
A/£ 

1/2 

+ 5^)>i-«.   ^>o. 

Next, we consider // in (4.1). 

N 
II = 

1    M 1    ^ 
^ £ (7(Qn ^) - '(« ^ o) = # E (;^n+£n * o -'(« ^f)) 

AT * 

£"<0 £re>0 

We estimate 

1    M 

(4.7) //< ^]£(/(QB-|£"l <<<<?'" +|£nD) 

If instead we expand using Qn = Qn — £n, we obtain the computable estimate 

(4.8) |F^(0-FV(t)|< 
1    M 

jf52(l(Qn-\Sn\<t<Qn + \£n\)) 
n=l 

Setting £ = max£n in (4.7), we obtain 

(4.9) \FM(t) - FM(L)\ < \F„(l + £)- FM(t - £)\. 

Now 

\FM{t +£)- FM(t - £)\ < \F(t + £)- F(t - £)\ 

+ \F(t + £)- FM{t + £)] + \F(t -£)- FM{t - £)\. 

Using (4.2), for any c > 0, 

\F{t±£)-FM{t±£)\< iog(e" 
2M 

lx\l/2 

with probability greater than 1 — e. Therefore, for any t > 0, 

'log(<-^1/2 

(4.10) \FM(t) - FM(t)\ < \F(t + £)-F(t-£)\+2 

with probability greater than 1 — e. 

2M 
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Note that 

M0(1 - FM(L)) = FM(l)(l - FM(t)) + (FM(t) - Fv(0)(l - FM{1) ~ *>(*))• 

We can bound the second expression on the right-hand side using (4.9) or (4.10) to 
obtain a computable estimator for the variance of F. 

We summarize the most useful results. 
THEOREM 4.1.  For any e > 0, 

(4.11)    \F(t) - FM(t)\ < 
Fs/(t)(l - FM(t)) 

Mt 

1/2 

1   M 

Tf E (7Wn - in < f < Qn + |£nl)) 
71 = 1 

2A/e 

with probability greater than 1 — e. 
With L denoting the Lipschitz constant of F, for any e > 0, 

(4,2)   TO.M0IS (£ß!S-£Sai)- + Iigg,r + s(^^ 

with probability greater than 1 — e. 
Remark 4.1. The leading order bounding terms in the a posteriori bound (4.11) 

are computable, while the remainder tends to zero more rapidly in the limit of large 
N. The bound (4.12) is useful for the design of adaptive algorithms among other 
things. Assuming that the solutions of the elliptic problems are in H2, it indicates 
that the error in the computed distribution function is bounded by an expression in 
which the leading order is proportional to 

1 , 
+ Lh2 

with probability 1 — e. This suggests that, in order to balance the error arising from 
finite sampling against the error in each computed sample, we typically should choose 

TV-ZI"4. 

This presents a compelling argument for seeking efficient ways to compute samples 
and control the accuracy. 

Remark 4.2. The expression 

^£(/(<r-i£"i<i<<r + ri)) 

is itself an expected value. If M < M and 

M' = {ni < ■■■ < nM} 

is a set of integers chosen at random from {1,... ,A/"}, we can use the unbiased esti- 
mator 

(4.13) JÄ E (HQn-\n<t<Qn + \£n\)) 
new"' 
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which has error that decreases as 0(l/vM). This is reasonable when TV is large 
since we are likely to require less accuracy in the error estimate than in the primary 
quantity of interest. 

Remark 4.3. A similar error analysis can be carried out for an arbitrary stochastic 
moment q with an unbiased estimator Q using Af samples. We let X be an approxi- 
mation to X and decompose the error as 

\q(X) - Q{X)\ < \q(X) - Q(X)\ + \Q(X) - Q(X)\. 

The first term can be estimated using the Chebyshev inequality, for e > 0, 

Since the variance of Q(X) decreases as M increases, we obtain estimates for this term 
analogous to the expressions above. We can estimate the numerical error Q(X)—Q(X) 
by computing a solution on a finer mesh Q(X) — Q(X). In the particular case that 
q(X) = £pf], we can compute the quantity very efficiently; see section 3. 

4.1. A numerical example. We illustrate the accuracy of the computable 
bound (4.11) using some simple experiments. We emphasize that (4.11) is a bound, 
and, in particular, we trade accuracy in terms of estimating the size of the error by 
increasing the probability that the bound is larger than the error. In this case, we 
desire that the degree of overestimation does not depend strongly on the discretization 
parameters. 

To carry out the test, we specify a true cumulative distribution function (c.d.f.) 
and sample M points at random from the distribution. To each sample value, we add 
a random error drawn at random from another distribution. We use the Kaplar-Meier 
estimate for the approximate c.d.f. in the Matlab statistics toolbox and then compute 
the difference with the true c.d.f. values at the sample points. We also compute the 
difference divided by the true c.d.f. values. 

The experiments we report include the following. 

First computation 
Sample distribution Normal, mean 1, variance 2 
Error distribution Uniform on [—5, 5] 
Second computation 
Sample distribution Exponential, parameter 1 
Error distribution Uniform on [—<5, 6] 
Third computation 
Sample distribution Exponential, parameter 1 
Error distribution Uniform on [—äX, öX], X = sample value 

We obtained similar results for a variety of examples. 

In Figure 4.1, we present three examples of approximate c.d.f. functions. In all 
cases, we bound the error with probability greater than 95%. In Figure 4.2, we plot 
the 95% confidence level bound calculated from (4.11) and compare this to the actual 
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FlG. 4.1. Plots of approximate (solid line) and true (dashed line) c.d.f. functions. Left: first 
computation with M = 5000, 5 = .001. Middle: second computation with J\f — 2000, & = .0001. 
Right: third computation with M = 500, (5 = .05. 

FlG. 4.2. Plots of the 95% confidence level bound calculated from (4.11) for the examples shown 
in Figure 4.1. Left: first computation with M — 5000, 6 = .001. Middle: second computation with 
M = 2000, S = .0001. Right: third computation with N = 500, 6 = .05. 

0.0     0.02    0.04    0.06    O.OX     0.10    0.12 
Hrror 

FlG. 4.3. Performance of the bound (4.11) for the three examples shown in Figure 4.1. Left: 
plot of the difference between the estimate and bound versus the error. Right: plot of the relative 
difference versus the error. 

In Figure 4.3, we plot the performance of the bound with respect to estimating 
the size of the error. In all three cases, the bound is asymptotically around 5 times 
too large. 

5. Adaptive error control. We now use Theorems 2.2, 3.2, and 4.1 to con- 
struct an adaptive error control algorithm. The computational parameters we wish to 
optimize are the mesh size h, the number of terms in the truncated Neumann series V, 
the number of iterations in the domain decomposition algorithm Z, and the number 
of samples Af. The first task is to express the error £ as a sum of three terms cor- 
responding, respectively, to discretization error, error from the incomplete Neumann 
series, and error from the incomplete domain decomposition iteration. 



DENSITY ESTIMATION FOR ELLIPTIC PROBLEMS 2955 

Considering the problem with randomly perturbed diffusion coefficient, we bound 
the leading expression in the error estimate (2.9) in one sample value as 

£"=|(/,$^)-(AnV[/?(X,V^i)| 

< |(/,$£]f) - (A-Vl^j.y*^) - (A"V(tC)00 - t/£)X), V$£i±)| 

(5.1) +|(A"V([/£i00-L^I),V$£]i)| 

+ |(A»V(tCco-^,oo).V^j±)| 
= £j" + £r™ + <fjll, 

where we use the obvious notation to denote the quantities obtained by taking X, V —> 
oo. 

The goal is to estimate £", £{}, and £™u in terms of computable quantities. To do 
this, we introduce AX and AV as positive integers and use the approximations 

Tjn ^ lin UP+AP,I+4I ~ U3o,oo' 

The accuracy of the estimates below improves as AX and AV increase. 
We have 

(5.2) £p K |(/, *^) - (A"V^,X) V$£f) - (A"V([/£+APiZ+AI - U$a), V«^)|. 

Likewise, we estimate 

(5-3) ^n«|(AnV(t/^x+AJ-^iZ),V$^)|, 

(5-4) £Tn » |(AnV(£/£+APiI - t/£p,x), V^±)|. 

We can find other expressions for £™u by passing to the limit in (2.3) on each 
domain d to write 

oo 

^^t, = E((-x",d)p((k0,d)"lkd)p)(k0■d)"H^(/) + ?M(A^^)). 

while 

%= E ((-^n'd)p((ka'd)~1kd)P) (kQ-d)-1(6d(/) + 6"'d(An,C/^)). 
p=0 

Subtracting and approximating, we find 

ffn,d fln>d 
^00,00       u,P,oo 

00 

~ ]£ ((-J4n'd)p((kM)-1kd)p) (ka'd)-1(b'i(/) + &n'd(An,C/äd
K))) 

P=P 

p-i 

+ 53 ((-J4n'd)p((k°'d)-1kd)p) (ka-d)-1 (^•''(A", C/S^,) -&n'd(An,c/£;fj). 
p=0 
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Summing yields 

frn,d T~fn,d 
^00,00       ^P.oo 

= ((-yp<<y((kM)-1kdn 0^ 

+ J2 {(-An'd)p({ka'd)-1kd)p) (ka'd)-1(bn'd(An,f/^d
M) - 6n'd(An, [/£;£,)). 

p=0 

Finally, approximating yields 

ffn,d fjn>d 
uoo,x ~ u-p:co 

« ((-/l"'d)7'((kn'd)-1k<')p) u%d
T 

+ ]T ((-/ln''i)P((ka''i)-1k'f)p) (ka'dr1{bn'd{An,U£d
AVX) - 6"-«'(An,t/^')). 

p=0 

We denote the operators corresponding to ka and k on Vh,d by ka and k, respectively. 
We have 

V 

(5.5)   £J}, * £   A"V((-^d)*>((fc°'d)-1fcT)£/^, V*^j)d 
d=l ^ 

+ Y, {{-An'dy{{ka'dy1kdy) {ka>d)-l(bn>d{An,u£d
APi:l:)-b

n<d(An,u£$:))\. 

We now present an adaptive error control strategy in Algorithm 3 based on The- 
orem 4.1 and the approximations 

Sn ptt«m££ + £% + €?„. 

We set 

£\ = maxf™,  £n = maxfj™,  £m = max£fj]. 
n n n 

We define in addition 

for a given t > 0. 

5.1. A numerical example. We apply the adaptive algorithm to the problem 
given in section 2.4. We start with a coarse mesh and small number of iterations, 
terms, and samples and let the adaptive algorithm choose the parameter values in 
order to make the error bound of F(t) smaller than 15% with 95% likelihood; i.e., we 
set TOL = 0.15 and t = .05. We set ax = 0.5, a2 = a3 = 0.125, and a4 = 0.25. 

Initially, we let h = 1/18 determine a uniform initial mesh, 2" = 40, V — 1, and 
M = CO. We set AT = 0.31 and AV — 1. We compute the adjoint solution using 
a refined mesh with h = h/2 but using the same number of iterations, terms, and 
samples as the forward problem.   To refine, we set ft, = l/(9(i - 1)), with i = 3 
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Algorithm 3. ADAPTIVE ALGORITHM 

Choose £ in Theorem 4.1, which determines the reliability of the error control 
Let TOL be the desired tolerance of the error \F(t) - Fjj(t)\ 
Let <7i +(72+o'3+cr4 = 1 be positive numbers that are used to apportion the tolerance 
TOL between the four contributions to the error, with values chosen based on the 
computational cost associated with changing the four discretization parameters 
Choose initial meshes 7/,, T-h and V, X, and M 

Compute {Up j, n = 1,..., A/"} in the space V/t and the sample quantity of interest 
values 
Compute {$£ j, n = 1,..., Äf} in the space V^ 

Compute £t
n, £i". £]\i for n = 1,...,M 

Compute Ftf(t) 
Estimate the Lipschitz constant L of F using F// 
Compute £iv 

while  Siv + \fr Zn=i (j(Qn - l^nl <t<Qn + \Sn\)) | > TOL do 

if L£\ > (TiTOL then 
Refine Th and T-h to meet the prediction that £\ ~ o^TOL on the new mesh 

end if 
if LSn > cr2TOL then 

Increase V to meet the prediction Z\\ ~ CT2TOL 
end if 
if LSiu > a3TOL then 

Increase V to meet the prediction E\\\ ~ (73TOL 
end if 
if £iv > U4TOL then 

Increase Af to meet the prediction £iv ~ 04TOL 
end if 

Compute {Up x,n = 1,..., A/"} in the space Vh and the sample quantity of interest 
values 
Compute {$£ j,n= 1,..., Af} in the space V^ 

Compute £", £{\, £™n for n = 1,... ,7V 

Compute Ftf(t) 
Estimate the Lipschitz constant L of F using Fj^ 
Compute £iv 

end while 

initially, and then for each refinement we increment i by 2. This means that we get 
3, 5, 7, etc. nodes in the x-direction and y-direction on each subdomain. 

In Figure 5.1 we present the parameter values for each of the iterates. The 
tolerance was reached after three iterations with h = 1/54, I = 160, V = 3, and 
M = 240.  In Figure 5.2, we plot error bound indicators after each iteration in the 
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FlG. 5.1.  Computational parameters chosen adaptively according to the adaptive algorithm. 

FlG. 5.2.  The error estimators computed after each iteration in the adaptive algorithm. 

adaptive algorithm and the total error bound. We compute an approximate error 
using a reference solution with /?. = 1/72, X = 300, V — 5, and M = 480 and 
show the result in Figure 5.3. The error decreases from almost 100% initially, with a 
distribution function that fails to detect critical behavior, to an error of around 30% 
to finally an error less than 3%. 

6. Conclusion. In this paper, we consider the nonparametric density estima- 
tion problem for a quantity of interest computed from solutions of an elliptic partial 
differential equation with randomly perturbed coefficients and data. We focused on 
problems for which limited knowledge of the random perturbations is known. In 
particular, we assume that the random perturbation to the diffusion coefficient is de- 
scribed by a piecewise constant function. We derive an efficient method for computing 
samples and generating an approximate probability distribution based on Lion's do- 
main decomposition method and the Neumann series. We then derive an a posteriori 
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FIG. 5.3. 
1, 2, and 3. 

Approximate error in the solutions produced by the adaptive algorithm for iterations 

error estimate for the computed probability distribution reflecting all sources of deter- 
ministic and statistical errors, including discretization of the domain, finite iteration 
of the domain decomposition iteration, finite truncation in the Neumann series, and 
the effect of using a finite number of random samples. Finally, we develop an adaptive 
error control algorithm based on the a posteriori estimate. 
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A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR 
INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS* 

J. BREIDT', T. BUTLER', AND D. ESTEP' 

Abstract. We consider the inverse sensitivity analysis problem of quantifying the uncertainty 
of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the 
map. This is a version of the model calibration or parameter estimation problem for a deterministic 
map. We assume that the uncertainty in the quantity of interest is represented by a random variable 
with a given distribution, and we use the law of total probability to express the inverse problem 
for the corresponding probability measure on the input space. Assuming that the map from the 
input space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem 
by using the implicit function theorem to derive a method for approximating the set-valued inverse 
that provides an approximate quotient space representation of the input space. We then derive an 
efficient computational approach to compute a measure theoretic approximation of the probability 
measure on the input space imparted by the approximate set-valued inverse that solves the inverse 
problem. 

Key words, adjoint problem, density estimation, inverse sensitivity analysis, model calibration, 
nonparametric density estimation, parameter estimation, sensitivity analysis, set-valued inverse 

AMS subject classifications. 60-08, 34F05 

DOI. 10.1137/100785946 

1. Introduction. We develop and analyze a numerical method to solve the in- 
verse sensitivity analysis problem: Given a specified variation and/or uncertainty in 
the output of a smooth map, determine variations in the input parameters that pro- 
duce the observed uncertainty. We formulate this inverse problem using probability 
to describe variation by assuming that the inputs and outputs are random variables. 
This inverse problem has an abstract interpretation in which the density is imposed 
on the output in order to observe the consequences for the inputs. It also has an 
experimental interpretation in which the model output matches observed values of an 
experiment and the imposed density is associated with the experimental data, i.e., 
reflecting the uncertainty in the data or arising as a consequence of experimental 
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To motivate this inverse sensitivity analysis problem, consider the situation of a 
manufacturer who will purchase a large number of metal plates of a given alloy and 
thickness that are to be used subsequently in a high temperature environment. In 
order to ensure the plates maintain integrity, the manufacturer specifies that a given 
heat load must be distributed quasi-uniformly after ten minutes of exposure, with 
some conditions on how much the temperature may vary through the plate. The 
plates are milled with variations in the purity of the alloy and the thickness of the 
plates, both of which affect the heat distribution under load. To check a batch of plates 
to see if it meets the requirements, the manufacturer tests the heat specification on a 
random sample of plates drawn from the batch. The random selection of samples, the 
variation in plate properties, and measurement error combined lead to a description 
of the test results as a random variable. After delivery, the manufacturer decides that 
knowing the statistics on the size of the plates and the composition of the alloy would 
be useful. The heat equation models the heat distribution under a given load once 
the conductivity determined by the alloy composition and the thickness of the plates 
are specified. The inverse sensitivity problem is to determine the distribution on the 
space of parameters consisting of the thickness and alloy purity from the distribution 
of the results of the heat experiments on the plates. 

The probabilistic inverse problem can be described more precisely as follows. 
Given 

« a model M(Y, A) with solution Y = G(\) depending on parameters and data 
A in parameter space A C Rd, 

» a linear functional q(\) = q(Y(\)) taking values in an output space T>, 
o an observed probability density Pr>(<?(A)) = PV(Q{Y(\))) on the output value 

determine 
<• a probability density cr^(X) on the parameter space A that produces the 

observed density. 
We assume the model M(Y, A) depends smoothly on the inputs, so the map q(\) is 
implicitly a smooth and deterministic function of A. 

There are several important issues associated with this problem. In general, the 
parameter space is multidimensional while there is a single observation (or a low di- 
mensional set of observations at most). So, the inverse problem is ill-posed in the 
sense that the inverse solution of the deterministic model is set-valued. Under the 
assumption of a smooth model, we address this issue by constructing a systematic 
method for approximating set-valued inverses. Second, we are particularly interested 
in models that are complicated and/or expensive to evaluate, e.g., requiring the solu- 
tion of a differential equation, so that the map to the output is determined implicitly. 
We address this issue by using adjoint operators [22, 20, 6, 21, 23, 12, 13, 9, 10, 7, 11] 
to compute the required derivative information. Third, while probability densities 
describe random variables, the densities themselves are not random. Common ap- 
proaches to approximating probability densities often use a random representation 
obtained by some variation of Monte Carlo sampling [14, 17, 18]; however, this is not 
a requirement. In particular, the approach described in this paper is not stochastic, 
rather it is based on the simple approximation commonly used in measure theory. 

In this paper, we present the basic method and analysis of a measure-theoretic 
computational approach for the probabilistic inverse sensitivity analysis problem. In 
[4], we present a numerical analysis of the discretization error that arises when evalu- 
ating the model by numerical solution and using a finite number of random samples 
to represent the distribution on the output quantity.  In [5], we discuss the problem 
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of dealing with multiple quantities of interest, which has application to data assimi- 
lation and "cascaded" uncertainty in operator decomposition solution of multiphysics 
problems. 

This paper is structured as follows. In section 2, we formulate the probabilistic 
inverse problem that we solve and discuss the relation to a Bayesian inverse problem. 
In section 3.1, we deal with the set-valued nature of the inverse problem by introducing 
a theory of generalized contours and explain how the generalized contours can be 
approximated. In section 3.2, we develop a computational measure theoretic method 
for approximating the inverse parameter distribution using approximate generalized 
contours. In section 4, we apply the method to a variety of problems. Finally, section 5 
summarizes the work. 

2. Formulation of the probabilistic inverse problem. The inverse problem 
we study is the direct inversion of the forward stochastic sensitivity analysis problem 
for a deterministic model. We consider a deterministic operator q(\) that maps values 
in a parameter space A to an output space V. We assume there is a parameter 
volume measure fi\ on A that determines the volume of sets in A. The volume 
measure depends on the units of measure used for the parameters and also reflects 
the structural dependency among the parameters, e.g., depending on whether or not 
ß\ is a product measure. The volume measure is specified as part of the model that 
defines the map q(X) since the parameters must be explicitly defined in the physical 
model that determines q. We assume that p.\ is absolutely continuous with respect 
to the Lebesgue measure and the volume V of A is finite. 

We first describe the forward stochastic sensitivity analysis for the deterministic 
map q(A). We assume that a probability density cr\(X) is specified on the parameter 
space A. This density distinguishes the probability of different events in A, i.e., the 
probability of an event A in A, by which we mean a measurable set of values, is 
computed via 

P(A)= /<rA(A)dMA(A). 
JA 

The deterministic model can be expressed in terms of a likelihood function L(q | A) of 
the output q values given the input parameter values A, where L(q | A) = 5(q — 17(A)) 
is the unit mass distribution at q = q{X). This implies the fundamental relationship 

f, L(g|AWA(A)duA(A) 
(2.1) Law of Total Probability Pv{q\A) = JA

   ,   '   ',\ '  .,,     '. 
Jj4ffA(A)dpA(A) 

This is a Fredholm integral equation of the first kind that determines a conditional 
probability density pt>{q\A) on the output given that the parameters come from A. 
Thus, we may determine the conditional probability of event BcPas 

P{B\A) =  I 
Jl 

.   ....       ..        JDJAL(q\X)a^\)dllA(X)dßv(q) 
Pv{q\A) dßv{q) = -y-^ —— _ . 

For forward sensitivity analysis it is common to take A = A so that P(B\A) = P{B), 
and we arrive at the common form for the law of total probability given by 

(2.2) pv(q) = f L(q\ A)CTA(A) dpA(A). 
J\ 
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This describes an analogue of a Perron-Probenius map where the deterministic map 
q(X) defines a transformation of the density O"A(A) to pv{q). This forward sensitivity 
analysis problem is often solved using a Monte Carlo approach: Random parameter 
sample values A are drawn from the distribution a\ on the parameter space; corre- 
sponding values of q(\) are computed; and these values are binned to produce an 
approximate probability distribution on the output. 

The stochastic inverse sensitivity analysis problem that we study is the inversion 
of the Law of Total Probability  (2.2). 

We assume that an observed probability density Pr>(<7(A)) is given 
on the output value q(X), and we seek to compute the corresponding 
parameter density 0A(A) that yields Px>(g(A)) via (2.2). 

It is important to note that what we seek for the solution of the inverse problem is the 
actual probability density that can be used to compute the probability of events in the 
parameter space A. In other words, we seek to compute the inverse of the analogue 
of the Perron-Frobenius map between the densities on the input and output spaces. 
The purpose of this paper is to describe a method for solving the inverse problem 
by providing a way to approximate the probability of an arbitrary event in the input 
space.   This can be used subsequently to generate an approximation of the inverse 
density and/or to compute any desired statistical moments of the inverse density. 

We emphasize the fundamental role of the underlying parameter volume measure 
p-A in defining the solution of the inverse problem. In particular, the a priori specifi- 
cation of [i\ imposes the structure of the measure on A, e.g., whether the measure on 
A is a product measure or not. In general, there are many combinations of <rA and 
/i-A that can yield a given observed density on the output. 

We provide a simple illustration of the inverse problem using the map 

9(A) = Ai +A2, 

where A!,A2 are random variables. For the inverse problem, we specify that q(\) 
has a 7V(0, 2/25) distribution and seek to determine the parameter distribution <TA(A) 

that yields the specified output density. This output distribution can be generated by 
choosing Ai, A2 to be independent identically distributed N(0,1/25) random variables; 
see Figure 2.1. As well, we could choose any bivariate normal density 

ftH((»VG ;))w,th2r2(i+?)=!< »«i-»i- 
If we find a distribution on A that generates q(X) according to a N(0,2/25) distri- 
bution, then we accept this as a solution to the inverse problem. The choice of the 
underlying parameter volume measure p.^ is critical to this task. In Figures 2.1-2.3, 
we show five different probability densities <TA(A) that yield the identical 7V(0,2/25) 
density on (/(A). Each of the five different densities correspond to five different under- 
lying volume distributions fj,\ as shown. 

The specification of ^A has to do with how measurements in A are carried out 
and the relationships between the parameters. As noted, the volume measure should 
be specified as part of defining the model. In many situations involving deterministic 
models, the product Lebesgue measure appropriately scaled to account for units is the 
natural choice. But, this is not always the case. Continuing the motivating problem, 
as a first approximation, we might consider the thickness and alloy composition to 
be physically independent parameters and impose a product measure on the space 
formed by the two variables using independent normalized Lebesgue measures.   A 
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Normal Density on the Parameters 

FlG. 2.1. Left: The JV(0,2/25) distribution imposed on the output \\ + A2. Right: The joint 
distribution of two independent N(0,1/25) parameters Ai and A2. Summing these variables is one 
way to compute the imposed normal on the output quantity. Figures 2.2-2.3 show alternatives. 

PlAfldH Sjmix VohmtK M 

• FlG. 2.2. The joint distributions of parameters (Ai,A2) sampled with respect to the density 
P\(\) and the corresponding volume measure presented in pairs of plots. Left two plots: The volume 
measure is uniform Lebesgue on A. Right two plots: The volume measure is uniform Lebesgue a set 
with three distinct parts. 

Parlcrntet Spate Probability Density Parameter Space Milurne Measure rr Sraee Probability Dcnsirj 

FlG. 2.3. The joint distributions of parameters (Ai,A2) sampled with respect to the density 
PA(A) and the corresponding volume measure presented in pairs of plots. Left two.plots: The volume 
measure is uniform Lebesgue on the boundary. Right two plots: The volume measure is uniform 
Lebesgue on a nonconvex interior set. 

more realistic description will take into account the fact that the thickness of the 
plates indirectly depends on the alloy composition during the milling process. We 
can model the milling process to determine the thickness as an indirect function 
of the physically independent variables of pressure in the milling process and the 
alloy composition. The measure on the space consisting of the thickness and alloy 
composition is then determined by propagating the product measure imposed on the 
independent alloy composition and pressure variables through the milling model. The 
resulting measure on the space consisting of the alloy composition and thickness will 
not be a product measure. 

The plots of inverse densities given in Figures 2.2-2.3 also illustrate the important 
point that injecting probability into the inverse problem by itself does not reduce the 
ill-posedness, even after specifying the parameter volume measure. The consequence 
of ill-posedness on the stochastic inverse problem is illustrated by the complex measure 
structure of the inverse probability densities in the plots. For example, these densities 
are not product measures. In general, it is not possible to determine densities for the 
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individual parameters without further information. We can determine only a measure 
on the entire parameter space. 

Comparison to a Bayesian inverse problem. There is another natural in- 
verse problem associated with the Law of Total Probability (2.1) that is important in 
the case of a general likelihood function L(q\\), not necessarily arising from a deter- 
ministic map. Namely, we may use Bayes' theorem to invert the likelihood function to 
obtain the "posterior density" p(X\q) given the "prior density" a\ on the input space 
A and a "data density" pt> on the output space V. We emphasize that the solution of 
this Bayesian inverse problem is a conditional distribution. This is very natural when 
the map from the input to output space has been modeled statistically by specifying 
L(q\\) given information about the statistical properties of the input parameters and 
output, quantity, e.g., when the map is derived empirically, rather than from physical 
principles. 

This Bayesian inverse problem is at the heart of Bayesian inference [26, 1, 19, 18]. 
In this approach, the inferential target is a single, unknown parameter (or parameter 
vector) A. We are given data in the form of observations q\,..., qn, for which a typical 
assumption is conditional independence, 

n 

(2.3) p(<Zi,...,9n|A)~lJp(9J|A), 
i=l 

where {p{qi | A)} are conditional probability densities with respect to some appropriate 
measure, and are specified up to the value of A. The right-hand side of (2.3) is 
the likelihood of the observations given the parameter. We are also given a prior 
distribution on A that gives a probabilistic description of the uncertainty about the 
values of A before any data are observed. This prior distribution is exactly a\(\) in 
the notation used above. Bayesian inference then proceeds by using Bayes' theorem to 
compute the posteriori conditional distribution of A given the observations q\,..., q„: 

n 

(2.4) p(A|cyi,...,</„) ocp(<7i,...,<7n|A)o-A(A) = JJpfe | A)<rA(A). 

We could adopt a Bayesian approach to solve the inverse problem we study by 
modeling CTA(A) pararnetrically as cr\(\\0) in terms of new (lower-dimensional) pa- 
rameters 6. This is known as a mixture or hierarchical model. In Bayesian terminology, 
OA.(A|0) >s the prior while a new distribution ae describing 6 is the hyperprior. As- 
suming that the hyperprior is specified, we then compute the posterior distribution 
on 0 given "data" from pp(g(A)). Any desired inferences about the distribution of A 
given 0 can then be obtained from the posterior. The difficulty with this approach is 
specifying a reasonable conditional model, which is difficult to verify empirically. 

The inverse problem solved in this paper shares some characteristics with the 
Bayesian inverse problem, but has fundamental differences as well. In the Bayesian 
problem, the inferential target is the parameter A, and o\ is given as prior information. 
The likelihood L(q | A) typically involves a nontrivial stochastic structure and is not 
deterministic. 

By contrast, in the inverse problem we solve the inferential target is the distribu- 
tion <TA, which is not given as the prior. Further, our likelihood L(q | A) is given by 
a deterministic map, which completely determines the set-valued inverse. 

The choice of inverse problem to solve depends completely on the available in- 
formation.   In the case of a deterministic physics-based model, the unknowns and 
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quantities subject to uncertainty are the data and parameter values that are input 
into the model and the observations that are supposed to match model output while 
the likelihood function determined by the map is completely trivial in a statisti- 
cal/probabilistic sense. Based on the law of total probability, the inverse problem 
we solve is the direct inverse of the probabilistic forward sensitivity problem for a 
deterministic model. 

3. Solving the inverse problem. As noted above, while probability densi- 
ties describe the random nature of a random variable, the densities themselves are 
not random. While a common approach to compute a discrete approximation of a 
probability density employs random sampling, this is not necessary. In this paper, 
we describe a method for computing approximate probability densities that does not 
require random sampling. Our approach breaks the solution down into two stages: 

1. Construct an approximate representation of the set-valued inverse solution of 
the deterministic model. 

2. Use measure-theoretic computational methods to approximate the probability 
density (measure) structure on the parameter space that corresponds to the 
set-valued inverse and the observed output density. 

These are independently interesting tasks. 
We present a brief overview before providing the details. Under the assumption 

of a smooth map, if we are given a fixed output value q G V, then the implicit 
function theorem guarantees the existence of a (rf — l)-dimensional manifold in A 
that is mapped to q. Motivation comes from the two-dimensional case, A = (Ai, A2), 
where the manifolds are contours of the surface g(Ai,A2) (left-hand illustration in 
Figure 3.1). Every point in A lies on a unique contour, so we may consider A as 
a set described by its contours. The set of (generalized) contours is an equivalence 
class in the input space, i.e., a quotient space representation of the input space. In 
A, there exists 1-dimensional curves transverse to the contours that intersect each 
contour once and only once (right-hand illustration in Figure 3.1). We can take one 
of these curves as the index for the set of contours. There is a bijection between the 
points on an index curve and the points in the range of the output q(A). Therefore, 
any measure posed on the range of the output imposes a measure on the index curve. 
Thus, the intersections of the contours with the index curve is a random variable with 

FIG. 3.1. Left: Each observation value corresponds to a unique contour curve. Right: On the 
horizontal plane, we show a transverse parameterization. Each point on the transverse parameter- 
ization corresponds to a unique contour curve, so the transverse parameterization acts as an index 
for the space of contour curves. There is a unique map from the points in the interval containing 
the observed output values to the points on the transverse parameterization. 
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A Sample of Contours 

FIG. 3.2. Left: We show a probability distribution imposed on the output values. A sample of 
output values drawn from this distribution corresponds to a unique sample of contour curves. Right: 
Plotted is a sample of contour lines in parameter space corresponding to a specified distribution 
on the output observation values along with three events. We specify the Lebesgue measure as the 
parameter volume measure. Event B has relatively low probability because while it has relatively large 
area, the probability of the contours is relatively low (visible because the density is sparse). Event 
A has intermediate probability because while the area of event A is relatively small, A contains 
contours with relatively high probability (which is visible because of the dense sample of contours). 
The probability of event C is largest because it contains the same high probability contours as A but 
has larger area. 

a distribution uniquely defined by the distribution of the output px>(g(A)) (left-hand 
illustration in Figure 3.2). In other words, there exists a unique solution to the inverse 
sensitivity analysis problem in the set of the contours. 

However, determining the set of contours analytically is infeasible in practice. In 
[23], the forward sensitivity analysis problem denned by (2.2), where a given density 
(jyv(A) is propagated through the output surface 9(A), is solved using a piecewise- 
linear tangent plane approximation to the output surface. This requires computations 
involving only inner products, which is cheap compared to the full model evaluation 
cost of q{\) for each new value of A. The derivatives of <?(A) are computed implicitly 
using adjoint methods. Motivated by this approach, we use a piecewise-linear tangent 
plane approximation to the output surface q(\) to construct approximate contours 
and an approximate index set. 

The next step is to determine the probability density on the parameter set that 
corresponds to the distribution on the transverse parameterization of the space of 
approximate contours. In order to assign a probability to a measurable set in A, we 
first recognize that such a set is defined by the contours it contains and the amount of 
each contour it contains (right-hand illustration in Figure 3.2). The parameter volume 
measure ß\ specified on A quantifies the amount of each contour contained in any 
given set. Combining the results of the generalized contours with such a measure, the 
monotone convergence theorem, and additivity properties of measures, we develop an 
algorithm to estimate the probability of any measurable set in A. This algorithm 
employs a piecewise constant approximation of measures that is commonly used in 
measure theory. This yields a direct computational method to approximate CTA(A). 

In the next two sections, we provide details of the two ingredients of the approx- 
imate solution method. 

Remark 3.1. Many solution methods for both statistical and deterministic inverse 
problems deal with ill-posedness by introducing some form of regularization, either 
directly or reposing the inverse problem as an optimization problem. Such methods 
avoid the need to deal with set-valued inverse solutions. 
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Remark 3.2. There are cases of interest, e.g., a parameter domain that contains a 
bifurcation point, for which the described method cannot be used in a straightforward 
fashion. We note that while an approach based on random sampling may be applied 
nominally to such a problem, the interpretation of the results is still problematic. 

Remark 3.3. While the solution method for the inverse problem proposed here re- 
lies on derivatives of a quantity of interest, it is not dependent on how those derivatives 
are computed. Instead of an adjoint-based approach, the derivatives might be com- 
puted using (deterministic) forward sensitivity analysis that computes the derivatives 
directly along with the solution of the model. Yet another approach, presented, e.g., 
in [27], employs a stochastic spectral method to obtain a polynomial representation 
of <?(A), which is then used to compute gradients. 

i 

3.1. Determining the inverse of the deterministic model using general- 
ized contours. We consider a finite dimensional map q from the space of parameters 
to the output defined implicitly by solving a finite dimensional nonlinear system of 
equations, 

(3.1) /(x;A) = 6, 

where x 6 R", parameter A € A C Rd (assuming that A is compact) is a random 
vector, and / : Rn+d —> Rn is assumed smooth in both variables. The goal is to 
compute a quantity of interest g(A) = q(x(\)) = (x, ip), described as a linear functional 
of the solution x(A). If x depends smoothly on A, then the dependence of q on A is 
also smooth. 

This problem applies in particular to differential equations that depend on a finite 
set of parameters. For differential equations, we require the same assumptions as the 
standard existence and uniqueness theorems to guarantee the smoothness of <?(A). 
This is discussed in more detail in the second part of this paper [4]. 

For any q e <?(A), we define <j(A) := q(\) — q. By assumption, <j(A) : Rd —» R is 
continuously diflerentiable and there exists A £ A such that q(X) = q, which implies 
that <y(A) = 0. We are mainly interested in the case where the quantity of interest 
varies as the parameters vary, so we assume that d\dq(\) j^ 0, i.e. there is at least one 
nontrivial partial derivative. We may relax the restriction of d\dq(\) ^ 0 for a finite 
number of points in A, where q(\) possibly attains a local extreme value and ignore 
this set of points when considering the generalized contours. 

By the implicit function theorem, there exists an open set U\ C Ad_1, where 
Ad_1 := {Ad_1 := (Ai,.. .,\<i-i)\\ = (Ai,. ■ ■ ,Xd) 6 A}, containing Xd_1, an open set 
V\ C Ad, where Ar/ := {A^|A 6 A}, and a differentiable function g\ : U^ —t V\ such 
that 

(3.2) {(A*-1,^-1))} = {A|7(A) = q) n (t/x x Vx). 

Since the implicit function theorem is a local result, there may be additional 
points in A that map to q, but are not contained in the set defined by (3.2). Thus, 
given q € <?(A), we choose a collection of sets {Ux x V^} = Uag^C^Ä^ x V\a }J where 
IJ^g^jAo} is the set of all A e A such that q(\) = q. Then using the same notation 
as in (3.2), the function fj\(Xd~l) might be piecewise defined. The set in (3.2) is a 
(d — l)-dimensional manifold that is a natural inverse of q(X) given q. We call this set 
the generalized contour. 
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THEOREM 3.1. If we choose distinct <?i,<?2 € ${&■), then the generalized contours 
for qi and 92 are unique and do not intersect. 

Proof. The nonintersection property follows immediately from the fact that q(X) is 
a function. Uniqueness follows immediately from the choice {U\ x Vj} = UQg/i{^Äa 

x 

V\ }, where Uae/ti^a} 's *^e se* °^ all A e A such that q(X) = q for a given value of 
9 6?(A).        D    ' 

In two dimensions, the generalized contours are simply contours of the surface 
f/(Ai, A2)• We denote a generalized contour for a specific quantity of interest q as 
f/~1(q). Since q(\) is smooth and A is compact, q{A) defines a compact interval of 
real numbers, lq := [qmyQM] — 9(A), where qm and qM are the absolute minimum 
and absolute maximum of 9(A), respectively. We redefine <?(A) to be the open interval 
(qm,<lM)> which we also denote by Iq. 

We next prove that there exists (possibly discontinuous) 1-dimensional curves 
that are transverse to the generalized contours that can be used to index the family 
of generalized contours. We call any curve that has the property that it intersects 
each generalized contour once and only once a transverse parameterization (TP). 

We give a constructive proof that is a useful algorithm. The algorithm produces 
discontinuous curves in A in general. 

THEOREM 3.2. Suppose f is smooth in (3.1) and q(\) is a linear functional of the 
solution to (3.1). There exists a transverse parameterization for the set of generalized 
contours. 

Proof We construct the transverse curve from a finite number of connected 
curves. We fix £ > 0 and e > 8 > 0, and set Iq<€ = [qm + e, qM — (]■ If A is compact, 
then the existence of transverse curves is guaranteed by the smoothness of 9(A). To 
construct a curve, we begin at a point JM 6 A such that C/(7M) = QM — Ö, and follow 
the direction of the negative gradient until the curve either intersects the boundary or 
a minimum or saddle is reached, and denote that point 7TO. From smoothness, exactly 
one contour for each value of q(\) between (9(7™), Q(IM)) is intersected by this curve. 
If (<?(7m)i9(7M)) does not completely cover Iq,t, then we select a point rm 6 A such 
that <?(rm) = qm + 6, and follow the direction of the gradient until the curve either 
intersects the boundary or a maximum or saddle is reached, and denote this point 
TM- We now check if (q(~fm), ?(7M)) U {q{Tm), O{TM)) covers 7?|£. If so, then we 
eliminate any part of the second curve that gives an overlap with contours intersected 
by the first. Otherwise, we continue to create this curve as above trying to cover the 
output interval defined by (<7(IM), <?(7m))- This process produces a countable number 
of connected curves whose union forms a (possibly discontinuous) transverse curve 
through the generalized contours that corresponds to a countable open cover of Iq:C, 
which is compact. Hence, there is a finite subcover of Iqe, which implies that the 
transverse parameterization can be constructed from a finite number of curves.       D 

In practice, we construct the transverse curve to the generalized contours of Iq 

by initially following the first two steps above with e = 0, i.e., locate JM £ A such 
that g(7Af) = <?M and rm € A such that q(rrn) = qTn and construct the pieces of 
the transverse curve by following the negative and positive directions of the gradient, 
respectively. If we now take e to be half the minimum of (?(7M) — q{l,n) and Q{TM) — 
q(rm), then following the steps above, we construct a curve transverse to all the 
contours of Iq in a finite number of steps. 

3.1.1. Approximating the set of generalized contours. Suppose that q is a 
linear function of A, i.e., q{\) = 7TA for some 7 e Rd (recall A C Rd). Then for fixed 
q S q{A) we have (with the same conventions as above) U^, Vj, and g\ : U\ -> Vj such 
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that {(Ad_1, <?);(Ad-1))} is the generalized contour. In this case, we write the function 
ffÄ(Ad_1) = (?■— (7d-1)T(Ad-1))/7d explicitly. The generalized contour above is a 
(d - l)-dimensional hyperplane, and we refer to this as a generalized linear contour. 

We approximate generalized contours locally by generalized linear contours, and 
approximate a generalized contour by a generalized piecewise-linear contour. We use 
generalized piecewise-linear contours computed from a piecewise-linear tangent plane 
approximation to 7(A). If q is an affine map of A, i.e., q(X) = 7TA + go for some 
<?o € K, then we use the function above with q replaced by q — qo- 

We obtain derivative information required to compute the tangent plane approx- 
imations implicitly by introducing the adjoint operator. This approach is very useful 
when the forward map is complicated to evaluate, e.g., involving the solution of a dif- 
ferential equation. But, the derivative information can be obtained by any convenient 
method. 

Local linearization of the linear functional. The goal is to approximate 
the map q(X) with a piecewise-linear map q(\) since it is possible to calculate the 
generalized contours for this approximate map. 

THEOREM 3.3. The generalized linear contours converge pointwise to the true 
contours locally in A. 

Proof. Suppose we choose a reference parameter value A = y. at which to solve 

/(*; A) = 6 

exactly. Call this reference solution y. Then according to Taylor's theorem, 

f(x; A) = f(y; M) + Dxf(y; p)(x - y) + Dxf(y; ß)(\ -fi) + K, 

where K ~ 0{\\x - y\\2 + ||A - [if), for \a\ = 2. Here Dxf and Dxf denote the 
derivatives of / with respect to x and A, respectively. 

In order to compute the tangent plane approximation efficiently, we use the gen- 
eralized Green's vector (f> that solves the adjoint to the linearized problem 

(3.3) .   AT<t> = iP, 

where A — Dxf(y; )i). Recall that q(\) = (x, ip), so by substitution of the above and 
standard linear algebra we arrive at 

?(A) = q(p) - (Dxf(y; M)(A - ß), 0) - (K, <P). 

Neglecting the higher order term leads to an approximation of q by an affine map 
q. If we denote the generalized contour of q given q by {(Ad_1, g\{Xd~1))} and the 
generalized linear contour of q given q by {(Ad-1, ffÄ(Ad_1))}, then at any Ad_1 £ Ux, 

(34) [^(A"-1) -^(A""1)] [<pTdxj(y^)} = -(n,d>). 

By assumption, d\dq(\) = 4>TdXdJ(y,ß) 7^ 0, so we rewrite (3.4) as 

k(Ad-1)-Jx(Ad-1)]=C(^0), 

where C_1 = —<pTd\df{y,ij), is a nonzero constant determined entirely by the refer- 
ence point {y,/J.). Thus, if we define 

\\U-X\\= sup ||A-fl|a, 

where || H2 denotes the standard Euclidean norm, then as \\U^\\ —> 0, ||R||2 —> 0, 
which implies that |s'x(Ad~1) - gx{Xd~l)\ -> 0.       D 
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Global linearization of the linear functional. We extend the local lineariza- 
tion technique to obtain a global piecewise-linear approximation of the linear func- 
tional over all of A. We first define a partition of cells {Bi}i=1 of A. The geometry 
is immaterial, as long as we can integrate constant functions over the cells. We apply 
the local linearization technique described above for each cell, and defining 

m._fl     if AS Si, 

we obtain a global piecewise-linear approximation q(X) to q(X) defined by 

M 

(3.5) g(A) := J2 {q(ßi) + (Vq(^), (A - Mi)}) Iß, (A), 
t=i 

where pi is the reference parameter value chosen in cell Bi. 
THEOREM 3.4. As \\Bi\\ —> 0 (or as M —> oo when the number of sample points 

are distributed uniformly), the generalized linear contour converges pointwise to the 
generalized contour. 

Proof. For the finite system of nonlinear equations, we have 

Vq{fj,i) = <f>jDxf{yi;Hi), 

where <fo solves the linearized adjoint problem using the reference point (2/;,/i,). If 
we let — (JZ.i,<pi) denote the higher-order terms neglected in the linearization of q(\) 
in cell Bi, then we can write the error of the piecewise-linear approximation, e(A) = 
q{\) - <j(A), as 

M 

eW = -Y,(ni'(f,i)1Bi(X)- 

The generalized linear contour of q given q is a collection of hyperplanes in A. Using 
the same notation as above, 

M 

MA"-1)-^-1)! <C^2 \(Ki,4>i)\,        C-^ min {1^3^/0/^)1} ■ 
i=\ 

This yields the convergence result.       D 
The transverse parameterization (TP) for the generalized linear contours is con- 

structed using q in the same way as described in the proof of Theorem 3.2. Since q is 
a piecewise-linear surface, the resulting TP is a piecewise-linear curve in A. 

Examples. We illustrate the convergence of generalized linear contours to true 
contours in the two examples below. 

In the first example, we suppose that q(Ai, A2) = AiA2exp [—(A, + I.25A2 — 1)] 
over [0,2] x [0,2]. We approximate q over a uniform partition {£?,} of [0,2] x [0,2] 
into squares, and we linearize around the midpoint of each Bt to form q in (3.5). We 
plot various contour curves and two TP's on each plot. The results are summarized 
in Figure 3.3. 

For a second example, we suppose q(\\, A2) = exp[cos(Aj) +sin(A2)] on [—27r — 
0.1,277 + 0.1]2. We proceed as above to obtain the numerical results summarized in 
Figure 3.4. 
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FlG. 3.3. Contours of q using 5x5 cells (top left), 10 x 10 cells (top right), 25 x 25 cells (bottom 
left), and 50 x 50 cells (bottom right). The TP is created using the algorithm outlined in the proof 
of its existence and is denoted by the circle-dotted and plus-dotted lines. The circle-dotted line is 
constructed from the maximum of q(\) and follows the negative direction of the gradient of <J(A), 

and the plus-dotted line is constructed from the minimum of q(\) and follows the direction of the 
gradient- 

s'. Computing the parameter probability density. We now explain how 
to use the unique solution to the inverse problem in the space of generalized contours to 
compute an approximation of the probability density CJA on A. We first observe if / = 
[91.92] C V is an event with probability P{I) = P{q{\) 6 /), then this corresponds 
to a measurable set in A that is defined as the set of all contours obtained by q~l(I). 
Prom the basic assumptions of smoothness and the nonintersecting property of the 
contours, the set of all contours is a set in A that is contained between the two 
contours defined by 9_1(9i) and 9_1(92) (or possibly one of these contours and the 
boundary of A). We assign this set the probability P(I). It follows immediately that 
we can define the inverse into the set of generalized contours for a given distribution 
of q(X) uniquely. 

THEOREM 3.5. Suppose f is smooth in (3.1) and q(X) is a linear functional of 
the solution to (3.1). If q{\) is a random variable with distribution Fq(q(\)), then for 
a fixed TP in A, the distribution of the intersections of the generalized contours on 
the TP, which is a random variable, is unique. 

The probability of a measurable set in A is determined by the contours the set 
contains and the amount of each contour the set contains and the probabilities of 
those contours. The parameter volume measure /M determines the contours a given 
set contains and the amount of each contour the set contains. 

3.2.1. Computational measure theory. The method we develop for comput- 
ing an approximate probability distribution is based on constructions used in measure 
theory, 
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FlG. 3.4. Contours of q using 7x7 cells (top left), 10 X 10 cells (top right), 25 X 25 celts (bottom 
left), and 50 x 50 cells (bottom right). The TP is created using the algorithm outlined in the proof 
of its existence and is denoted by the square-dotted and circle-dotted lines. The square-dotted line 
is constructed from the maximum of q(\) and follows the negative direction of the gradient ofq(X), 
and the circle-dotted line is constructed from the minimum of <?(A) and follows the direction of the 
gradient. 

THEOREM 3.6. Given a measurable set A C A, we can approximate P{A) using 
a simple function approximation to CTA(A), which requires only calculations of volumes 
in A. 

The constructive proof below parallels Algorithm 1 for approximating the prob- 
ability of a measurable set A C A. 

Proof. For A restricted between any two contours induced by a subinterval of a 
partition of V as in Algorithm 1, q{\) is approximately a uniformly distributed random 

variable. Suppose that {<7j},_0 is a partition of T> such that qo < qi < ■ ■ ■ < q^, and 
if Ej — [<7J-I,9J], then V — UjEj.   Let Aj 
A = UjAj. The probability of Aj is given by 

{A | q(\) e Ej}.   We assume that 

P(Aj)= f  crA(\)dfiA(\). 
JA, 

We can compute this probability because of the 1-1 correspondence between the con- 
tours and output values, i.e., P{Aj) = P{Ej) = JE pv{q) dßT>(q). Therefore, we have 

a simple function approximation to OA(A) given by 
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Algorithm 1. APPROXIMATE PARAMETER PROBABILITY DISTRIBUTION METHOD 

Fix simple function approximation, p}-, '(q), to pv{l) that induces a partition 
ui=i    [<?t-i! <?i) °f £* where for each i = 1,..., N(M), p^, '(q) is constant on each 
subinterval [<j;_i,gj) 
ui=i    [Qi-ijQi) induces a partition of A by generalized contours and {A,},=1 

denotes this partition 

Let Pj denote probability of Aj given by /, > pv   (q) dfit>{q) 

Partition A with small cells {bi}i=1 

for i = 1,...,M' do 
for i = 1,...,A/(M) do 

Calculate ratio of volume of bi D A, to volume of A,-, store in matrix V-^ 
end for 
Set P(bi) equal to E"=I'

}
 VijPj 

end for 
Given event A C A, estimate P(/l) using 

• inner sums, i.e., sum of P{lh) for all i € / C {1,..., M'} such that b^ C A, 
• outer sums, i.e., sum of P{bi) for all i € / C {1,..., M'} such that 6i D A ^ 0, 
• average of inner and outer sums, or 

• //)°'A,A/'(
A
)^A(A), where VAM'W = £;=i P{bi)UM)- 

Given event A C A, we use the law of total probability to write 

N 

P(A) = J2P(A\Aj)P(Aj). 
3=1 

Using the above simple function approximation to the parameter density, we have 

P(ADAj) _ IAHAJ 
dMA(A) _ m(AnAj) 

P(A\A}) P(Aj) J    dfiA(\) pA(Aj) 

Hence, the probability P(A g A | </(A) g Ej) — P(A | Aj) can be calculated from the 
volume measure on model space since it depends only on measurable sets in A if we 
use the approximation q(\) ~ U(Ej) for A g Aj. The value is the ratio of volume 
of A n Aj to the volume of Aj. Since the density on data space is a nonnegative 

integrable function, there exists a sequence of simple functions {pv   (<7)}M=I with 

22M+1 +  k - 1. 
Po°(<7)=   Yl   -^M-^M.SPviq)), 

fc=i 

and /A/,fc = [(fc - 1)/2M, /c/2M]. We first observe that the partition {lM,k} induces a 

partition {i?jv/,fc} of P. Also, we observe that p^, '{q) —» pr^c/) in L1 as M —► oo by 
the monotone convergence theorem, and for any measurable set E C V, 

L 
22M+1  ,        . 

p%"{q)dnv(q)=   2^   -2M-f*v(.EUtknE)^Pv(E) as M-too. 
fc=i 
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Thus, we can approximate the value of P(A | Aj) by the ratio of volume of A 0 Aj to 
the volume of Aj obtained from the volume measure on model space if the induced 
partitions {Aj} come from a sufficiently fine partition {Ej} of data space so that the 
distribution of ^(A) for A € Aj is approximated by U(Ej). 

Since P{A) = sup{P(A') : K C A, K compact} and P{A) =inf{P(C/) : AcU, 
U open}, we can estimate P{A) using the inner and outer sums described by Algo- 
rithm 1.       Ü 

Remark 3.4. If the set A has not (yet) been specified, we may still carry out the 
first part of Algorithm 1 to obtain a discretized approximation of the measure P on 
model space. 

Remark 3.5. The set of cells {bi}i=1 in Algorithm 1 is introduced purely for 
computational purposes and is not necessary to the approximation of P{A). We 
choose {bi}i=1 in order to approximate P(A), for any event A C A, without carrying 
out the calculations in the nested loops of Algorithm 1 for each new event. If we are 
interested only in one event, A C A, then we might skip the step of partitioning A 
by {bi}i=l and replace the step in the nested loop by the following: Calculate ratio 
of volume of A D Aj to volume of Aj, store in vector Vj. We may then approximate 

P(A) by Z^WjPj. 
Remark 3.6. Note that as we refine the partition {Ej} on the data space, which 

in turn refines the partition {A?} on model space, we should consider refining the 
mesh that defines the partition {&,} on model space. The reason is that we assign a 
probability P(bi) to each cell 6, that in essence reapproximates the simple function 
approximation, 

by the new simple function 

P(bi) 
*A(A) « VA,M'W = E -hrk^W- 

~[ /'A(A) 

If the partition {bi} remains fixed as the approximation of px>(q) by simple functions 
is refined by the partition {Ej}, then the representation of CTA(A) as a simple function 
converges with respect to the fixed {bi}. When choosing {&;}, we should consider that 
a cell bi might be large relative to the Aj that it intersects, i.e., bt might intersect many 
Aj. When this is the case, estimating the probability over bi by a constant P(bi) might 
not be an appropriate approximation. In general, it is not computationally demanding 
to estimate an appropriate size of the 6j. 

Observations on simple function approximations. The use of simple func- 
tion approximations of a probability density is sufficiently unusual in the context of 
stochastic analysis of differential equations as to justify comment. Simple function 
approximations form the basis for classic measure theory because they yield several 
benefits, including 

• Simple function approximations are widely applicable under minimal assump- 
tions on the density being approximated. As the examples below suggest, 
probability densities solving inverse problems appear to be highly complex in 
general. 
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• The convergence analysis for simple function approximations is also widely 
applicable.   This contrasts with sampling techniques such as Markov chain 
Monte Carlo methods whose convergence properties are stochastic and can 
be highly sensitive to properties of the problem. 

Though we have not exploited the fact in this paper, simple function approximations 
also offer significant benefits for stochastic sensitivity analysis of differential equations 
[12, 13, 9, 10, 7].   In particular, combining a simple function approximation with 
sensitivity derivatives of a quantity of interest with respect to parameters provides 
both a natural dimension reduction mechanism and the basis for adaptive sampling. 

Of course, a significant issue with simple function approximations is the nominal 
dependence of accuracy on the dimension of the parameter space.   This may be a 
consequence of the common approach of using hyper-rectangular cell discretizations of 
the underlying space combined with the unfortunate growth in diagonal dimension of 
hyper-rectangles as dimension increases, though we report on some inconclusive results 
of using radial basis functions in [12]. In our experience, the effects of dimension are 
nominal up to dimensions of 8-10, and we have effectively used the piecewise constant 
approximations to dimensions of order 15-18. We note that this is effective dimension. 
By exploiting dimension reduction, the nominal dimension of the parameter space may 
be higher. 

4. Examples. We apply the new method to solve inverse problems associated 
with a variety of maps. We first consider three constrained geometric optimization 
problems. We then discuss examples involving a nonlinear ordinary differential equa- 
tion and a nonlinear elliptic partial differential equation with two parameters. Finally, 
we discuss the determination of regions with high probability. 

In the following examples, we have chosen the uniform Lebesgue measure for the 
parameter volume measure and often impose a normal distribution on the output 
quantity of interest. The first choice is made because it is commonly the (implicit) 
default, e.g., in Bayesian inference. The imposition of a normal distribution on the 
output is also a common choice. In our examples, it serves the purpose of illustrating 
the complex nature of the inverse probability measure that results even when a normal 
distribution has been imposed on the output. However, we emphasize that neither of 
these choices are important in terms of implementing the numerical solution method, 
which is readily applied for any distributions. 

4.1. A 2-dimensional nonlinear function. We consider the map determined 
implicitly as the solution of the finite-dimensional nonlinear system of equations given 
by 

Aixf + x% = 1, 

xl ~ ^2X2 — li 

where Ai and A2 are the parameters. Geometrically, solutions x = {x\,X2)T to the 
system represent intersections of the hyperbola and ellipse. The quantity of interest 
is the second component of the solution in the first-quadrant, i.e., q(X) = q(x(X)) = 
X2=(x,ip), where tp = (0,1)T. According to (3.3), the adjoint problem is 

2/UVi 2y, \ 
2y2    -2^22/2 )v       ' 

where fi = (fii,fi2)T al'd y = (j/i,?/2)T are the reference parameter and reference 
solution for the forward problem. 
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0.1    0.15   0.2    0.25   0.3    0.35   0.4    0.45   0.5 0    0.8 

FIG. 4.1.  Left: Uncertainty of output is modeled as a random variable with a normal distribu- 
tion.  Right: A plot of the map q : A —» R. 

0.92        0.96 0.84       0.88       0.92       0.96 

FIG. 4.2. Illustration of an application of Algorithm 1. Left: We determine which contours are 
contained in an event AcA and how much of each contour is inside the event. Right: We estimate 
the probabilities of small cells contained in the event and use an inner and outer estimate to obtain 
an approximation of the probability of the event A. 

In order to create an interesting example, we choose A = [.79, .99] x [1—A.bs/OA., 1 + 
4.5v/0TT] based on a sensitivity analysis of the forward problem in [23]. We use six- 
unifonnly spaced mesh points in both the Ai and A2 directions of A to create cells 
{Bi)i=\ t'ia* partition A. We use the centroid of each cell as the reference parame- 
ter pi = (piti\ P2,i)T in that cell and solve the forward problem to obtain reference 
solutions j/j = (yi,i,2/2,t)T at these points, and then solve for the generalized Green's 
vector 4>i = (0i,ii<t>2,i) at the reference point (pi,yi). According to (3.5), we obtain 
a global piecewise-linear approximation q to q defined as 

q(\):=jr(y2,l + (\-pi)
T( vh 0 

0   -vh 1B,(A). 

We assume that the output data is a random variable with normal distribution on 
the data space defined by (/(A) (Figure 4.1). We assume p\ is the Lebesgue measure. 
We implement Algorithm 1 to calculate P{bi) for small cells for each fine partition of 
A and determine the probabilities of events A C A. We plot the results in Figure 4.2. 
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FlG. 4.3. We use 15 x 15 x 15 small cells in Algorithm. 1. We plot the approximate distribution 
from several angles. Left: A 3-dimensional view. Right: The same 3-dimensional view rotated 90 
degrees clockwise. 

0.7 

0.65. 

0.6. 

0.55 

0.5. 

0 45. 

0.3 

FlG. 4.4. We use 15 x 15 X 15 small cells in Algorithm 1. We plot the approximate distribution 
from several angles. Left: The original ^-dimensional view rotated 180 degrees clockwise. Right: 
The original 3-dimensional view rotated 270 degrees clockwise. 

4.1.1.  A three-parameter geometric constrained optimization problem. 
The map to be inverted is determined by minimizing the distance to the point 
(1, —1,1) among points constrained to lie on the surface g = 4, where 

g(xi,X2,x3; \Xl A2,A3) = Aii? + \2xl + \3xj. 

Geometrically, the parameters determine the shape of the ellipsoid that defines the 
constraint. Using the method of Lagrange multipliers we set up a system of nonlinear 
equations with four state variables and three parameters. We take the quantity of 
interest as the first state variable, which geometrically is interpreted as the first spatial 
coordinate in the solution to the constrained minimization problem. We set A = 
[.35, .65] x [.28, .52] x [.42, .78] and construct a piecewise-linear approximation using 
125 points in A. We assume a normal distribution on q(X) and taking the underlying 
parameter volume measure //.A to be a normalized Lebesgue measure. We use 3375 
small cells {Bt} in Algorithm 1. We plot the probabilities at the midpoint of each 
cell with the color of the point determined by the probability of the small cell in 
Figures 4.3-4.4. 
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V° 

FIG. 4.5. We use 15 x 15 x 15 x 18 small cells in Algorithm 1. We plot "snapshots" of 
the approximate probability distribution for three values of the fourth parameter. Left: The fourth 
parameter is set at its minimum value. Middle: The fourth parameter is set at its midpoint value. 
Right: The fourth parameter is set at its maximum value. Notice how the probabilities vary in space 
as we vary the fourth parameter. 

4.1.2. A four-parameter geometric constrained optimization problem. 
The map to be inverted is determined by minimizing the distance to the point (5, 5, 5) 
among points constrained to lie on the intersection of the surfaces g = 1 and h = 0, 
where 

g(xi,x2,x3; Ai, A2) = Xix* + \2x% - x\, 

h(xi,X2, X3; A3, A4) = A1X1 + A2X2 - X3. 

Geometrically, g = 1 defines a hyperboloid of one sheet and h = 0 defines a plane 
through the origin, and the intersection of the two constraints is a closed curve. Using 
the method of Lagrange multipliers we set up a system of nonlinear equations with 
five state variables and four parameters. We take the quantity of interest as the first 
state variable, which geometrically is interpreted as the first spatial coordinate in the 
solution to the constrained minimization problem. We set A = [1.4,2.6] x [.7,1.3] x 
[1.4,2.6] x [.35, .65] and construct a piecewise-linear approximation using 750 points 
in A. We assume a normal distribution on q(\) and take H\ to be a normalized 
Lebesgue measure. We use 60750 small cells {b,} in Algorithm 1. Displaying a 4- 
dimensional distribution is problematic. We plot "snapshots" of the approximated 
probability density for three fixed A4 values in Figure 4.5. 

4.1.3. A two-parameter ordinary differential equation.  We now study the 
nonlinear ordinary differential equation 

x = Aisin(A2a:),       0 < t < T, 

x(0) = 1. 

The linear functionals (quantities of interest, <?(A)) we study take the form 

rT 

9(A) = (i(0,^(t)> = /  (x(a;A),tf(a))da, 
Jo 

and we take the quantity of interest to be the average value of x(t) over the time 
interval [0,2]. Thus, we set ip(t) = l[0i2](t)/2, and the generalized Green's function 
<p(t) solves the adjoint problem, 

(-j>(t)-AT(t)<t>(t)=m,       T>t>0, 
\$(T)=ij(T), 
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FlO. 4.6. Left: The global piecewise-linear approximation to q(A) obtained using Algorithm 1. 
The cells in A illustrate the coarse discretization of this space for the forward problem of obtaining 
a piecewise-linear approximation and the circles in each cell indicate the reference parameter used 
to linearize g(A) in that cell. We assume a normal distribution for q(A) and use a grid of 40 x 40 
small cells. 

where A(t) := f'{y(t; /x)) is the Jacobian of / = Ai sin(A2x) evaluated at y(l; fi), ß is a 
reference parameter, and y(t;[i) is the solution to (4.1.3) for this reference parameter. 
Compare this to (3.3). Using substitution, integration by parts, and Taylor's theorem, 
we arrive at a linear approximation to q(\) for parameters near n, and analogous to 
the finite dimensional case, we obtain a global piecewise-linear approximation to q(\) 
over A = [.8,1.2] x [.l,n — .1] shown in Figure 4.6. 

Remark 4.1. There can be substantial error in the reference solutions and gra- 
dients used when applying the method to differential equations whose solutions must 
be approximated numerically, and we study the effect, of these errors in the second 
paper [4], 

4.1.4.  A two-parameter elliptic partial differential equation.  We now 
study a nonlinear elliptic partial differential equation 

-A« = Ai(u - A2)
2,    (*,y) e ft = [0,1] x [0,1], 

u = 0, {x,y)edü. 

The quantities of interest, r/(A), take the form 

q(X) = (u,ip) =  / u(x,y)tp(x,y)dxdy, 
Jn 

and we take the quantity of interest to be the average value of u over Q,. Thus, we set 
ip(x,y) = 1, and the generalized Green's function 4>(t) solves the adjoint problem, 

-A<£ - AT(j> = V,    (x,y)eil, 

<f> = 0, (x,y)edn, 

where A := f'(w(x,y;ß);fj.) is the Jacobian of / = Ai exp(A2«) evaluated at w(x,y;fi), 
ß is a reference parameter, and w(x,y\ß) is the solution to (4.1.4) for this reference 
parameter. Using substitution, the weak form of (4.1.4), and Taylor's theorem, we 
arrive at a linear approximation to q(X) for parameters near /.t, and just as with the 
previous examples, we obtain a global piecewise-linear approximation to <j(A) over 
A = [.95,1.05] x [—.1, .1] using Algorithm 1. We show the results in Figure 4.7. 
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FlG. 4.7. Left: Global piecewise-linear approximation to q(\) obtained using Algorithm 1. We 
used a 11 x 13 grid of coarse cells to discretize A and used the midpoint of each cell as the reference 
parameter in that cell. We assume a normal distribution of q(X) and we use a 33 x 39 grid of small 
cells. 

FlG. 4.8. Left: Generalized contours from 500 samples of <?(A) = Ai + A2 generated from a 
iV (0,2/25) distribution. Middle: The TP intersects each contour once and goes from the minimum 
of 17(A) in the lower left corner to the maximum of g(A) in the upper-right corner of the plot. Right: 
Intersections of contours on the TP are marked with a star and can be used to index the inverses 
and determine a unique distribution of the contours on the TP using any consistent indexing scheme 

4.2. Determining regions of high probability. The new method can be 
applied to find regions of high probability. Consider q(\) = Ai + A2, where A = 
[0,1] x [0,1]. Figure 4.8 shows the generalized contours for 500 samples of q(\) taken 
from a N(0, 2/25) distribution along with the TP and the intersections of contours on 
the TP. Where the contours intersect the TP most densely corresponds to a region of 
high probability in the space of contours. 

We can locate regions of high probability by sorting through the probability of 
the fine cells {6j}. We can rank order these cells and determine any cells of high prob- 
ability. We can also determine regions of neighboring cells that all have relatively 
high probability. We illustrate using the four-parameter geometric constrained opti- 
mization problem in section 4.1.2. In Table 1, we list the ten small cells with highest 
probability. If we let the events {&,} become small, under a smoothness assumption, 
the probabilities of these events are related to the maximum-likelihood estimate. 

5. Conclusion. We consider the probabilistic inverse sensitivity analysis prob- 
lem: Given a specified uncertainty in the output of a map, determine variations in 
the parameters that produce the observed uncertainty. We formulate this inverse 
problem using the law of total probability. We describe and analyze a method for 
computing the approximate probability density that solves the inverse problem and 
does not require random sampling. Our approach breaks the solution down into two 
stages: 
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TABLE 1 
We indicate the location of the ten cells with the highest probabilities for the example in sec- 

tion 4.1.2. The first column gives the probability and the second column gives the dimensions and 
location of the cells. There are clearly two distinct regions for events with relatively high probability. 
In general, one can use this information to determine where the largest regions of highest probability 
are located in a high-dimensional parameter space. 

P(b,) order 10-4 hi location 

0.600381927 
0.600446977 
0.600462420 
0.600465732 
0.600470136 
0.600474821 
0.600501752 

0.600463048 
0.600464252 
0.600468545 

[2.44,2.52] x [1.22,1.26] X (2.04,2.12] X [0.4,0.4167] 
[2.36,2.44] x [1.06,1.1] x [1.96,2.04] x [0.4333,0.45] 
[2.44,2.52] x [1.18,1.22] x [2.04,2.12] x [0.4333,0.45] 
[2.36,2.44] x [0.98,1.02] x [2.04,2.12] x [0.4167,0.4333] 
[2.36,2.44] x [1.06,1.1] x [1.96,2.04] x [0.4167,0.4333] 
[2.36,2.44] x [1.26,1.3] x [1.96,2.04] x [0.4167,0.4333] 
[2.36,2.44] X [0.98,1.02] X [2.04,2.12] x [0.4333,0.45] 

[1.4,1.48] x [1.18,1.22] x [1.64,1.72] x [0.3833,0.4] 
[1.4,1.48] X [1.18,1.22] x [1.64,1.72] x [0.35,0.3667] 
[1.4,1.48] x [1.18,1.22] x [1.64,1.72] x [0.3667,0.3833] 

1. Construct an approximate representation of the set-valued inverse solution of 
the ill-posed deterministic inverse problem. 

2. Approximate the density on the parameter space that corresponds to the 
set-valued inverse and the observed output density using a simple function 
representation. 

We illustrate the method and several features using a variety of examples. 
In [4] we present numerical analysis of discretization error, e.g., in evaluating the 

model by numerical solution and in finite sampling. In [5], we discuss the problem of 
dealing with multiple quantities of interest, which has application to data assimila- 
tion and "cascaded" uncertainty in operator decomposition solution of nmltiphysics 
problems. 
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BLOCKWISE ADAPTIVITY FOR TIME DEPENDENT PROBLEMS 
BASED ON COARSE SCALE ADJOINT SOLUTIONS 

V. CAREY *, D. ESTEP ', A. JOHANSSON *, M. LARSON S, AND S. TAVENER ' 

Abstract. We describe and test an adaptive algorithm for evolution problems that employs a 
sequence of "blocks" consisting of fixed, though non-uniform, space meshes. This approach offers 
the advantages of adaptive mesh refinement but. with reduced overhead costs associated with load 
balancing, re-meshing, matrix reassembly, and the solution of adjoint problems used to estimate 
discretization error and the effects of mesh changes. A major issue with a block-adaptive approach 
is determining block discretizations from coarse scale solution information that achieve the desired 
accuracy. We describe several strategies to achieve this goal using adjoint-based a posteriori error 
estimates and we demonstrate the behavior of the proposed algorithms as well as several technical 
issues in a set of examples. 

Key words, a posteriori error analysis, adaptive error control, adaptive mesh refinement, 
adjoint problem, discontinuous Galerkin method, duality, generalized Green's function, goal oriented 
error estimates, residual, variational analysis 
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1. Introduction. We describe and test an adaptive algorithm for evolution 
problems that we call "blockwise adaptivity". This approach employs a sequence 
of "blocks" consisting of fixed, though non-uniform, space meshes, and is motivated 
by considerations of efficiency and accuracy. We balance the goal of achieving de- 
sired accuracy using discretizations with relatively few degrees of freedom against the 
computational costs associated with load balancing, re-meshing, matrix reassembly 
and in particular the cost of error estimation. A block adaptive strategy reduces the 
number of mesh changes that must be treated, which reduces the amount of com- 
putational time spent on re-meshing, assembly, and load balancing, and makes the 
problem of quantifying the effects of mesh changes on accuracy computationally fea- 
sible. A block adaptive strategy also provides a natural coarse scale discretization 
on which to solve the adjoint problem used to compute global a posteriori error esti- 
mates. This reduces the twin computational difficulties of storing a fine scale forward 
solution in order to form the adjoint problem and solving the adjoint problem on that 
fine scale discretization. However, a major issue with a block-adaptive approach is 
determining block discretizations from coarse scale solution information that achieve 
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the desired accuracy and efficiency. We describe several strategies to achieve this goal 
using adjoint-based a posteriori error estimates. 

To focus the discussion, we consider a reaction-diffusion equation for the solution 
u on an interval [0,T], 

u- V-(e(x,£)Vu) 

u{x,t) = 0, 

u(x,0) -u0(x), 

f{u,x,t),    (x,t) £ Q x (0,T], 

(x,t) edUx (Q.T], 

x e u, 
(i.i) 

where il is a convex polygonal domain in Rd with boundary <9fi, ü denotes the partial 
derivative of u with respect to time, and there is a constant e > 0 such that 

e(x,t)>e,    iefi,(>0. 

We also assume that e and / have smooth second derivatives. The algorithms in this 
paper generalize to problems with different boundary conditions, convection, nonlinear 
diffusion coefficients, as well as systems, see [17, 15]. 

In terms of adaptive mesh refinement, the interesting situation is a solution of 
(1.1) that exhibits "regionalized" behavior in space and time. Considerations of effi- 
ciency suggests that time steps and space meshes should be locally refined to match 
the regional behavior, see the plot on the left in Fig. 1.1. Classic adaptive mesh re- 
finement can be described as a constrained optimization problem, e.g., determine a 
discretization using the fewest degrees of freedom that yields a solution satisfying a 
given error criterion. In general, it is impossible to determine a closed-form solution 
of this optimization problem. An adaptive algorithm is an iterative procedure for 
determining a nearly optimal solution. 

FIG. 1.1. The evolution of a traveling front solution. Left: A computation using space meshes 
chosen by a standard adaptive strategy to control the spatial residual error at each time step. This 
entails re-meshing, re-assembly, load balancing, and projecting the solution on a new mesh at each 
step. Right: The uniform mesh that is required to achieve the same control over the residual. The 
computation is assembled and load balanced only once. 

We present a generic adaptive algorithm in Algorithm 1.1. An adaptive compu- 
tation is generally started with an initial coarse mesh. The adaptive algorithm is then 
applied "real-time" as the integration proceeds so as to generate a new space mesh 
for each new time step, where the new space mesh is based on (or adapted from) the 
mesh for the current time step. In practice, the remeshing may be applied on intervals 
of a small number of steps. 

While adaptive mesh refinement is appealing on an intuitional level, there are 
serious issues facing its use for evolution problems including the following. 
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Algorithm 1.1 Generic Adaptive Algorithm for an Evolution Problem 
Choose an initial coarse mesh and time step 
while the final time has not been reached do 

Compute a numerical solution using the current time step and space mesh 
Estimate the error of the computed solution 
while the error estimate is too large do 

Estimate local error contributions and adapt in space 
Estimate local error contributions and adapt in time 
Compute a numerical solution using the new time step and space mesh 
Estimate the error of the computed solution 

end while 
Increment time by the accepted time step 

end while 

1. Accuracy Each spatial mesh change requires a projection of the numerical 
solution onto the new mesh, and this can affect, accuracy. In fact, this can 
destroy convergence altogether, see [8]. 

2. Overhead Costs Changing the spatial discretization requires generating a 
new mesh and reassembly of matrices. Significant mesh changes require a 
redistribution of unknowns among the processors to achieve load balancing. 
All of these tasks are computationally intensive. 

3. Coarsening Un-refinement or coarsening of a mesh involves loss of informa- 
tion about a numerical solution that cannot be recovered. Currently, there is 
no theory for coarsening that guarantees that there is no loss of accuracy. 

4. Global Error Estimation Efficient adaptive mesh refinement requires ac- 
curate error estimates of the true, global error, but cancelation of errors over 
both space and time makes choosing adapted meshes problematic. 

Using a fixed spatial mesh eliminates the first three issues. But, the scale required of 
the mesh is determined by the finest scale required in any region where discretization 
impacts global accuracy, see Fig. 1.1. This necessarily increases computational time 
and solver costs and memory limits may make it impossible to use the necessary 
uniform mesh. 

In this paper, we propose a "blockwise" adaptive algorithm that employs nonuni- 
form meshes that remain fixed for discrete period of times, or "blocks", see Fig. 1.2. 
With the proper implementation, this strategy addresses the following key issues. 

1. Accuracy The projections onto new meshes occur at a relatively small set 
of discrete times. We use a posteriori error estimates to predict the effect of 
the projections and choose overlaps in the meshes to reduce the error induced 
by the mesh changes. 

2. Overhead Costs Re-meshing, assembly, and load balancing are required 
only at the discrete times demarcating blocks. 

3. Coarsening There is no coarsening of a given mesh in the indicated strategy. 
Mesh changes are handled purely as projections between different meshes. 

The idea of re-meshing only after a fixed number of steps is by no means new. 
However, this strategy depends critically upon choosing suitable block discretizations, 
and thus, ultimately, on accurately predicting the behavior of the solution. The choice 
of block discretizations is a difficult issue that requires balancing the inefficiency of 
using a fixed spatial mesh inside each block against the gain in accuracy achieved 
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Overlap Mesh 

FlG. 1.2. The evolution of a solution with a traveling front computed using blockwise adaptivity 
with two blocks. On each block, the space mesh is chosen to maintain the same level of control 
over the local residual as is achieved in the computation shown in Fig. 1.1. In addition, there is a 
sufficient degree of overlap between the two meshes (the tightly-shaded mesh region) to insure there 
is no loss of accuracy in projecting the solution between the two meshes. Re-meshing, assembly, and 
load balancing is only required twice, once for each block. 

by limiting projections between different meshes and the decrease in computational 
cost due to limiting the number of times at which re-meshing, re-assembly, and load 
balancing is required. This is partly a computer science problem of distributing avail- 
able resources, e.g., memory and compute cycles, efficiently, and partly a numerical 
analysis problem, e.g., determining meshes for each block and projections between 
blocks. 

In this paper, we focus on the problem of determining blocks, e.g., the length 
of times for each block, the meshes for each block that maintain accuracy in the 
desired information, and suitable overlap meshes for transitions between blocks from 
the coarse-scale adjoint solutions. The solutions of these problems require accurate 
estimates of the error in a specific quantity of interest. We use a computable a 
posteriori error estimate that yields robustly accurate estimates of the error in a 
specified quantity of interest in terms of a sum of space-time element contributions, 
see [9, 10, 17, 15, 3, 20]. The a posteriori error estimates are based on duality, 
adjoint problems, and variational analysis. Accurate error estimates are obtained 
by numerically solving the linear adjoint problem related to the desired quantity of 
interest. 

Solving adjoint problems offers computational challenges such as the need to store 
the forward solution in order to form the adjoint problem and the cost of the adjoint 
solve. Our approach is to perform the adjoint solves using relatively coarse scale 
discretizations and using a coarse scale representation of the forward solution to form 
the adjoint problem, which reduces the memory overhead and the cost of the adjoint 
solve. This approach is motivated by the following observations. 

1. Adjoint problems are linear and often present fewer numerical difficulties than 
the associated forward problems. 

2. Solutions of adjoint problems tend to vary slowly on the scale of the dis- 
cretization, whereas residuals of forward solutions tend to oscillate on the 
scale of the discretization 

.3. The accuracy required of the adjoint solution, which is being used only for 
error estimation, is orders of magnitude less than generally desired for the 
forward solution. 

An enormous literature on adaptive methods for differential equations has devel- 
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oped over nearly six decades of activity and the major developments form a highly 
inter-connected web. We do not attempt to review the history of adaptive methods or 
to present a comprehensive list of references. Instead, we provide only a short list of 
references that either contain further references and/or address computational issues 
related to adaptive mesh refinement for evolution problems [8, 7, 5, 4, 18, 22, 9, 10, 
17, 19, 15, 3, 1, 23, 24, 20, 2, 14]. 

This paper considers adaptive mesh refinement from a different point of view than 
much of the existing literature. Namely, we are concerned with trying to understand 
how to adapt discretizations based on under-resolved solutions on relatively coarse 
discretizations in order to obtain particular information, as opposed to analyzing 
adaptive mesh algorithms in the asymptotic limit of mesh refinement. This point of 
view is important for many large scale applications, for which such conditions are 
generic. In §2 we review the standard a posteriori error analysis and modify this for 
a block adaptive strategy. We review adaptive error control in §3, and introduce new 
features necessary for block adaptivity and several block adaptive strategies. One- 
and three-dimensional illustrative computational examples are provided in §4 and we 
draw conclusions in §5. 

2. Discretization and error estimation. We begin by reviewing discretiza- 
tion and a posteriori error estimation for evolution problems and then describe the 
block-wise discretization and present the corresponding error estimate. 

2.1. Discretization. We formulate the discretization as a space-time finite ele- 
ment method because that is convenient for deriving a posteriori error estimates based 
on variational analysis. However, we emphasize that the estimates can be extended 
to a wide range of discretizations, e.g. finite difference and finite volume methods, 
which can be written as equivalent finite element methods. 

We describe two finite element space-time discretizations of (1.1) called the con- 
tinuous and discontinuous Galcrkin methods, sec [11, 13, 12, 10, 17, 15]. We partition 
[0, T\ as 0 = to < t\ < h < ■ ■ ■ < tn < • ■ • < tf/ = 1', denoting each time interval by 
In = {tn-.i,tn\ and time step by kn = tn — £„_i and we construct a discretization T 
of U such that the union of the elements in T is f! while the intersection of any two 
elements is either a common edge, node, or is empty. We assume that the smallest 
angle of any element is bounded below by a fixed constant. To measure the size of the 
elements of T, we use a piecewise constant function h, the so-called mesh function, 
defined so /i|& = diam(A) for AgT. Similarly, we use k to denote the piecewise 
constant function that is kn on /„. 

The approximations are polynomials in time and piecewise polynomials in space 
on each space-time "slab" Sn = fi x In. In space, we let V C HQ(Q) denote the space 
of piecewise linear continuous functions defined on T, where each function is zero on 
ÖH. Then on each slab, we define 

Wl = \ w(x,t) : w(x,t) =Y^tjVj(x), Vj £ V, (x,t) G Sn \ . 

Finally, we let W denote the space of functions defined on the space-time domain 
fl x [0,T] such that v\Sn <5 W% for n > 1. Note that functions in W may be 
discontinuous across the discrete time levels and we denote the jump across /.„ by 
[w\n = w+ - w~ where wj = lims^tn± w(s). 

We use a projection operator into V, Pv £ V, e.g. the L2 projection satisfying 
(Pv,w) = (v,w) for all w e V, where (■,•) denotes the Li{£l) inner product.   We 
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use the || || for the L? norm. We also use a projection operator into the piecewise 
polynomial functions in. time, denoted by 7rn : L2(In) —> V(I„), where Pq(In) is the 
space of polynomials of degree q or less defined on In. The global projection operator 
7T is defined by setting 7r = nn on Sn. 

DEFINITION 2.1.   The discontinuous Galerkin dG(q) approximation U € W 
satisfies UQ  = PUQ and 

["  {(U,v) + (eVU,Vv))dt+({U}n-i,v
+)= f" (f(U),v)dt 

for all v € W»,     \<n< N.    (2.1) 

We also use a related method for solving the adjoint problem: 
DEFINITION  2.2.     The continuous  Galerkin cG(q) approximation U e   W 

satisfies UQ   = Pu0 and 

I"  {(U,v) + (eVU,Vv))dt=  I" (f(U),v)dt 

for all v e W?-1,     l<n<N, 

(2.2) 
Note that U is continuous across time nodes when the space mesh is fixed. 

With appropriate use of quadrature to evaluate the integrals in the variational 
formulation, these Galerkin methods yield standard difference schemes. If the lumped 
mass quadrature is used in space, then the discrete system yielding the dG(0) approxi- 
mation is the same as the system obtained for the nodal values of the "backward Euler 
in time"-"second order centered difference scheme in space" finite difference scheme. 
Likewise, the cG(l) method is related to the Crank-Nicolson scheme, and the dG(l) 
method is related to the third order sub-diagonal Pade difference scheme. Under gen- 
eral assumptions, the cG(q) and dG(q) have order of accuracy q + 1 in time at any 
point and a superconvergence order of 2q + 1 and 2q respectively at time nodes. 

2.2. An a posteriori error estimate. We begin by defining a suitable adjoint 
problem for error analysis. A more detailed description is given in [15]. The adjoint 
problem is a parabolic problem with coefficients obtained by linearization around an 
average of the true and approximate solutions. 

f = f(u,U)=f   ^(us + U(l-s))ds. (2.3) 

The regularity of u and U typically imply that / is piecewise continuous with respect 
to t and a continuous, H1 function in space. 

Written out pointwise for convenience, the adjoint problem to (1.1) for the gen- 
eralized Green's function associated to the data tp, which determines the quantity of 
interest, 

L 
T 

(u,tp)dt, 
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is 

'-(/>- v- (eV4>) -f<t> = ip,   (x,t) en x (T,0|, 
0(a-, t) = 0, (x, t) 6 OH x (T, 0], (2.4) 

^(x,T) = 0, I6Ü, 

This choice for the adjoint yields the following error representation formula for 
the dG method. 

THEOREM 2.3. dG A Posteriori Error Estimate 

[    (C, V) dt = ((/ - P)u0, m) + £(M»-1, {*P<t> - 4>)t-l) 
Jo n=l 

+ /   ((£/, TXP4> -4>) + {e(U)VU, V(TTP^ - <j>)) - (/([/), TTP0 - 0)) dt.    (2.5) 

The initial error is e~(0) = (/ — P)u0. 
In practice, we compute a numerical solution of the linear adjoint problem ob- 

tained from (2.4) by replacing u with the computed approximate solution U in the 
definition of / and solve using a higher order method in space and time, sec [15]. We 
denote the approximate adjoint solution by $. We focus on the dG method, while 
application to the cG method is analogous. 

COROLLARY 2.4.  The approximate a posteriori error estimate for the dG method 
is 

f  {e,i>)dt 
Jo 

N 

E{U) = E(U;i>) = ((/-P)Wo,*(0)) + ^([t/]„-1,(^P$-$):_1) 

4- f   ({Ü,nP$ - <Z>) + (e{U)S7U,V(nP$ _$))_(/([/),TTP* - $)) df 
Jo 

(2.6) 

2.3. Blockwise discretization. We describe the blockwise formulation of the 
discontinuous Galerkin method. We partition [0, 7"] into time blocks 0 = To < Ti < 
T2 < ■ ■ ■ < Tb < ■ ■ ■ < TB = T. We discretize each block [Tb-i,Tb] by Tb-i — t{,0 < 
h,\ < •• ■ < tb,Nb = Tb, denoting each subinterval by /;,,„ = {tb,n-\, ft,n] and time step 
by kb,n = tb,n — h,n-i- To each block [T(,_i,7(,], we associate a discretization Tb of 
n arranged so the union of the elements iii Tb is Q while the intersection of any two 
elements is either a common edge, node, or is empty. Wc assume that the smallest 
angle of any element is bounded below by a fixed constant. To measure the size of 
the elements of Tb, we use the mesh function hi,. 

The approximations are polynomials in time and piecewise polynomials in space 
on each space-time "slab" S(,|7l =flx /;,„. In space, we let V(, C #o(n) denote the 
space of piecewise linear continuous functions defined on Tb, where each function is 
zero on d£l. Then on each slab, we define 

Wb,n =  I W(X< 0 :   W(X> t) = J2 iJvbj(X)< VbJ 6  Vb,  (X, t) 6 Sb,n I . 

Finally, we let Wq denote the space of functions defined on the space-time domain 
n x [0,T] such that v\sbn £ Wjn for b,n > 1.  Note that functions in W may be 
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discontinuous across the discrete time levels and we denote the jump across £(,_„ by 

MM = K,n - Wb,n- 
To compute the dG approximation on the new block, we project the final value of 

the approximation from the previous block onto the new mesh. We use a projection 
operator P^v G Vj, and a projection operator into the piecewisc polynomial functions 
in time, denoted by i\b,n : L2(Ib,n) -> "Pq(h,n)- We then define Kb as 7T(, = 7r<,|7l on 
Sb,n- Finally, wc define global projections P and ix which on each block are Pb and 
7T;, respectively. 

DEFINITION 2.5. The blockwise discontinuous Galerkin dG(q) approximation U £ 
W'i satisfies Ub~(j = P\Uo and for b = 1, 2, • • ■ , B, 

I1'" {(Ü,v) + (eVU,Vv))dt+{[U\b,n-uv+)= /"*'" (f(U),v)dt 

for all v e W6*n,     \<n<Nb.    (2.7) 

2.4.  A blockwise a posteriori error estimate. Adapting the standard argu- 
ment that yields (2.5), we obtain a blockwise a posteriori error estimate. 

THEOREM 2.6. Blockwise A Posteriori Error Estimate 

fT B 

/   {e,i>)dt w ((/ - Po)«o,*(0)) + V((/ - Pb)UMTb-i)) 
Jo 6=1 

B ( rTb 

+ J2[ {(Ü,TrPb® - *) + (t(U)VU, V(TTF6$ - *)) - (f{U),nPb<!> - $)) dl 

Nb "b \ 

+  £ ([J/]M-i,(T^-*)Jn-i   ■    (2-8) 
n- = l ' 

The second term on the right measures the effects of changing meshes on the accuracy 
of the approximation. A similar "jump" term already appears in the estimate for the 
standard dG method at each time step. In this case of transitions between blocks, the 
"jump" arises because of mesh changes between blocks. Note that the adjoint weight 
does not involve the projection of $ into the approximation space (i.e. Galerkin 
orthogonality). Instead, the contributions from the projections accumulate in the 
same way as an initial error. 

Our purpose is to use the a posteriori bounds IE x, IE t to choose block times {Tb} 
and corresponding meshes % and timesteps kb^- An important issue is the effect of 
transferring solutions between the meshes of adjacent blocks on the accuracy of the 
computed information, and so wc address the computation of a bound on the second 
term on the right in (2.8), 

H(l/) = ^|((/-ft)C/,*(r6_1))|. (2.9) 
6=1 

3. Adaptive error control. We start off by describing some standard ap- 
proaches to adaptive error control and the relation to adaptive error control based on a 
posteriori error estimates. We then turn to the problem of choosing blocks for a block 
discretization and generating the corresponding spatial and temporal discretizations 
for each block. 
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3.1. Goal oriented adaptive error control. The aim of goal oriented adap- 
tive error control is to generate a mesh with a nearly minimal number of elements 
such that for a given tolerance TOL and data ip, 

f 
Jo 

(e,tp) ds < TOL. (3.1) 

We note that (3.1) cannot be verified in practice because the error is unknown, so 
instead we use an estimate or a bound for the error in the quantity of interest. Different 
ways to generate an acceptable mesh vary by the estimate or bound used for the 
quantity of interest as well as the strategy for mesh refinement. 

For example using the a posteriori estimate (2.6), the goal of adaptive error control 
is to determine a discretization so that a mesh acceptance criterion, 

E{U) < TOL, (3.2) 

is satisfied. If (3.2) is not satisfied, then we refine the mesh in order to compute a new 
solution for which the criterion is met. Refinement decisions require identifying the 
contributions to the error from discretization on each element. We can write E(U) as 
a sum over space-time elements, 

E(U) £ ((/ - P)uQ, $(0))A + £ Y, (M»-i. (T^ - *)ti)< 
A£T n=lA€T 

N ftn 

+ J2J2  /      ((C/,7rP$-$)A + (e(C/)V(/,V(7rP$-$))A-(/(t/),7rP$-$)A)d£ 
u=iAeT''t"-1 

where ( ,  )A denotes the L2 inner product on element A.   This clearly identifies 
possible element contributions. 

However, a major difficulty is that the error estimate generally involves a large 
amount of cancelation among the element contributions, which makes determining a 
truly efficient refinement strategy extremely difficult. 

_       _        e^S**'?;' .S.v.sa 

Time Steps 

FlG. 3.1.   The element contributions to the error in integration. 

EXAMPLE 3.1.   We consider a first order accurate numerical solution that has the 
element contributions shown in Fig. 3.1. 

The first time step has the largest contribution. The next three steps each con- 
tribute -0.033, so cancelation means that the total contribution from the first four 
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steps is 0.001. Likewise, the next six steps contribute +0.003 in total. The last four 
steps contribute 0.08 in total. The total error is therefore 

.1 - 3 x .033 + .011 - .01 + .011 - .01 + .011 - .01 + 4 x .02 = 0.084 

If we use a standard approach of refining only some fraction of the elements with the 
largest contributions, we are likely to refine the first four steps. For simplicity, we 
assume that, the elements marked for refinement are divided into two time steps. The 
resulting integration will have accuracy 

-TX2X.1--X6X .033 + .011 - .01 + .011 - .01 + .011 - .01 + 4 x .02 » 0.0835. 
11 I1 

Note that the individual element contributions decrease at a second order rate. The 
problem is that even though the element contributions in the first four steps are 
individually large, there is significant cancelation and refinement in this region and 
refinement does not decrease the error significantly. On the other hand, if we refine 
the last four time steps instead, we obtain 

.1 - 3 x .033 + .011 - .01 + .011 - .01 + .011 - .01 + -^ x 8 x .02 « 0.044. 
2^ 

While this is a non-standard approach, it decreases the error significantly. 

In the adjoint-weight approach, the issue of cancelation of error is neglected in a 
sense by replacing the accurate error estimate E(U) by an inaccurate upper bound, 

E(U)<lE(U) = E(U;il)), (3.3) 

where we define JE (U; ip) by summing bounds over each element. 
DEFINITION 3.2. Element-wise upper bound on the total error 

N      

([tf]„-l,(7TP*-*)+_l) £{U^) = £|((/-P)«o,*(0))a| + ££ 

+ J2 J2    /      (C>,7r^-«»)A + (e(C/)VC/,V(7rF$-$))A-(/(C/),7rP$-$)Adt 
n=l Ae7~' •''n-l 

Thus, if (3.2) is not satisfied, the mesh is refined in order to achieve 

JE(U)<TOL. (3.4) 

The adaptive error control problem can now be profitably posed as a constrained 
minimization problem, namely to find a mesh with a minimal number of degrees of 
freedom on which the approximation satisfies the bound (3.4). Using the fact that 
the bound IE is a sum of positive terms and assuming the solution is asymptotically 
accurate, a calculus of variations argument yields the generic (sec e.g. [9, 10, 3, 2]). 

Principle of Equidistribution An approximate solution of the 
constrained optimization problem for an optimal mesh for an upper 
bound on the error is achieved when the elements contributions to 
the bound are approximately equal. 
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The Principle of Equidistribution has been used in various forms at least since the 
seventies (and probably earlier in industry). However, experience with a wide range 
of problems suggest that the bound M (U) is generically several orders of magnitude 
larger than the estimate E{U). A strategy based on the Principle of Equidistribution 
that optimizes computational cost with respect to a error bound and not the actual 
error can therefore result in significant over-refinement. 

In general, there are many solutions of the constrained minimization problem 
associated with (3.4). An adaptive mesh algorithm is a procedure for computing an 
acceptable solution. Traditionally, different approaches are used for spatial and tem- 
poral adaption. A global "compute-estimate-mark-adapt" algorithm (see for example 
1.1) is typically used for spatial meshes. This is an iterative approach in which only 
some fraction of the elements on which the contribution to the error bound is largest 
are refined during each iteration and whole cycle is iterated until a prescribed tol- 
erance is achieved. Temporal approaches to mesh adaption, e.g., local error control 
[21], tend to use a "sweeping" strategy from initial to final time, where a solution 
is advanced past each time step only when the step contribution is estimated to be 
lower than an acceptable fraction of the total error. This may be viewed as a gener- 
ally pessimistic way to achieve the Principle of Equidistribution because it removes 
positive effects of cancelation of error altogether. As a consequence of these differ- 
ences, element contributions to the error estimate or bound typically vary in size quite 
considerably while contributions from different time intervals are more nearly equal. 

We use a strategy that treats space and time discretizations more equitably. In 
the case of a parabolic problem, it is straightforward to distinguish the time and space 
contributions to the bound /E. We define the time and space bounds as follows. 

DEFINITION 3.3.  Element-wise temporal and spatial error bounds 

n=i Aer 
N 

([t/]n-l,((T-/)P*)t,), 

+ £ J2    / " (#■ (ff - I)p®)& + (<U)VU> V(TT - l)P9)& 
n=i Aer ■''n-i 

-(/(£/), (7T-/)P«)Adl (3.5) 

JB*(U)= £|((/-/>o,$(0))A| + £X> 
Aer «=i Aer 

+ EE / c* 

([l/]„-i,(M-*)J_i)A 

(£/, P* - *)A + (e(U)VU, V(P$ - $))A 

(/([/), P*-*)Adt •    (3.6) 

We see that the time bound is precisely the a posteriori bound for the dG approxi- 
mation for the "method of lines" initial value problem resulting after discretization in 
space. The adjoint weight depends on the projection of the adjoint solution into the 
time finite element space. On the other hand, the adjoint weight in the space bound 
depends on the projection of the adjoint solution into the spatial finite element space. 
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We split the error between the time and space contributions and refine the current 
mesh in order to achieve 

TOT TOT 
E*(U)<^*ndEt(U)<^. (3.7) 

On a given time interval, this requires an iteration during which both the space mesh 
and time steps are refined. 

3.2. Goal oriented block adaptive error control. For the purpose of de- 
veloping a block adaptive algorithm, we treat adaptivity with respect to space and 
time in the same way. The reason is that we determine the blocks by predicting the 
local element sizes (or number of sub-elements) that are required in the final mesh. 
We create a block by grouping together a set of coarse-scale space-time slabs that are 
adjacent in time and satisfy some criteria, e.g. similar spatial meshes are predicted 
for the space-time slabs in the block or a maximal number of elements are predicted 
to be required in the block. 

3.2.1. Choosing a global tolerance for the error bound. We want the pre- 
dictions of the element sizes required in an acceptable fine scale mesh to be as accurate 
as possible. We recall that an acceptable mesh need only satisfy the estimate criterion 
(3.2) and not the more stringent bound criterion (3.4). We define the overestimation 
factor for a given mesh, 

_ JE(U) 
7 ~ ~E(Üj' 

and the corresponding absolute tolerance for 7E, 

ATOL = 7 x TOL . 

Wc replace (3.4) by 

^)<^and^)<^. (3.8) 

Note that ATOL » TOL when there is little cancelation among the element con- 
tributions and ATOL > TOL otherwise. In this way, we attempt to mitigate the 
inefficiency that is introduced by replacing an accurate error estimate by an inaccu- 
rate bound in decisions about, mesh refinement. This approach for setting tolerances 
is discussed further in [16]. 

3.2.2. Predicting refinement in space. Given a local space-time element <3 = 
6(A, n) = A x. [t„_i, tn] in the nth space-time slab that is marked for refinement, we 
show how to predict the number of space-time elements that are needed to meet the 
acceptance criterion. We assume that in the current mesh, there are N time steps and 
M space elements in each space-time slab, giving a total of NM space-time elements. 
We define a local absolute tolerance 

LATOL=™ 
2NM 

By the Principle of Equidistribution, we adopt the goal of refining each space-time 
element so that the local element contribution is approximately LATOL. 
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Using a priori convergence analysis, see [15], it is possible to show that there is a 
constant C such that 

ß*\ev,n)~clh*y (3-9) 

as h& -> 0, where p is related to the order of the finite element method in space and 
/iA is the element size. Likewise, we can show constant C such that 

as fc -> 0, where q is related to the order of the finite element, method in time. 
Now suppose that an element Gncw in the final mesh is obtained from 60id in the 

current mesh by refinement. We have 

LATOL«*.^**.^ x (^)P- (3.11) 

This yields a prediction for the new mesh size, 

^«(£f^Y**fcw (3.12) 

Recalling that d is the space dimension, this predicts that the element A0id should 
be refined into roughly 

sub-elements. 

3.2.3. Predicting refinement in time. For refinement in time, 

^4,„^4ol„x(^)'^AT0L. (3.14) 

This yields a prediction for the new mesh size, 

/ \ llq 

fcnew ~    -=-,  x ^oid- (3.15) 

This predicts that the time step fc0ia should be refined into roughly 

1/9 
fcoid = (^\e^\ 

knew      I LATOL J (3.16) 

sub-intervals. 
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3.2.4. Determining overlaps for meshes on adjacent blocks. After the 
meshes for each block are determined based on the a posteriori prediction of error, we 
need to estimate the effects of transferring the solution between meshes on adjacent 
blocks. See § 4.1 for an example that illustrates this point. Recall that (2.9) provides 
a bound on these effects. The difficulty with using (2.9) is that we do not have the 
fine scale numerical solution U required for that expression until after solving on the 
fine scale, whereas ideally we could predict a reasonable overlap before computing the 
expensive fine scale solution. 

We list three strategies for mitigating the possibility of projection error in our 
block adaptive framework. 

1. There is a very simple strategy. In forming the space mesh for the block 
[Tb-i,Tb] x Q, we guide refinement by using the maximum of the element 
contributions on each individual element, taking the maximum over the time 
intervals included in the block. We may simply include the maximum over 
the last time interval included in the previous block, [T(,_2,T(,_i], i.e., over 
the interval [tb-i,Nh-,-i, ^-i,Nt_J- We can be even more conservative by 
including some number of the last time steps in the maximum computation. 

2. We can use gradient recovery [6] to compute an approximate solution on the 
fine scale mesh in each block using the solution from the last time interval 
contained in each block. We can then directly compute (/ — Pb)U for each 6 
and evaluate (2.9). 

3. We can evaluate (2.9) a posteriori by evaluating (/ - Pb)U using the fine scale 
forward solution and the coarse scale adjoint solution. 

3.3. Block adaptive algorithms. Using the development above, we present a 
generic block adaptive algorithm in Algorithm 3.1. We provide a detailed algorithm 
in Appendix A. 

Algorithm 3.1 Block Adaptive Algorithm 
1: Choose the "coarse" mesh and time step 
2: Compute the coarse scale numerical solution 
3: Estimate the element contributions to the error for the current solution 
4: Predict the number of space-time elements into which each current space-time 

element is to be divided using (3.13) and (3.16) 
5: Build block discretizations by constructing meshes satisfying the requirements for 

groups of neighboring time steps 
6: Compute the fine scale numerical solution using the block discretizations 

We note that the Block Adaptive Algorithm 3.1 can be iterated, so that the fine 
scale becomes the new coarse scale, and a new fine scale is subsequently computed. 
In crude terms, the block adaptive Algorithm 3.1 is analogous to the core estimate- 
mark-refine algorithm at the heart of the generic Algorithm 1.1, but is different in 
the mark and refine steps. The critical step defining the block adaptive algorithm 
Algorithm 3.1 is the strategy used-to create block discretizations. Once the blocks 
are identified, we can use any adaptive mesh refinement strategy for producing the 
actual meshes. We describe several strategies for determining block discretizations. 

3.3.1. A memory-bound strategy. In the first strategy, we assume there is 
a target number of elements Nmax in space that is maximal in some sense, e.g., the 
largest number of elements that can be stored in core. We form blocks by creating a 



BLOCKWISE ADAPTIVITY 15 

union of adjacent coarse-scale space-time slabs, one slab at a time, until the projected 
space mesh for the block uses Nmax elements. To create the block mesh, we use the 
maximum of the predicted number of elements Nelem.children on each individual 
element (given by equation (3.13)) in the union forming the block. We illustrate in 
Fig. 3.2. The parameter 9 governs how often the mesh is replaced by a coarser mesh, 
where 9 « 10 works well in practice. 

Division into Space-Time Blocks 

^r  1 * i K j - ^ •-- 
I* '■$ 1- F^ > ^ > 

m   1 
r-    1 k S? i* 

>: < < ,• 
s ¥ i "$'' - ^ -' '.' > ^ 

E     M   5 % % ~i * < -;. > , '' < >. * 3 
f= H g % - 

■:- > :- ' V ;. ? :> a ? 3. i — £ : > -' , C- '• ^ ä i i1 

' •f Ä s t? P 1 
;- . - ■ 

;; "> 4 
© ■■ 

> ': 

Space 

Predicted Mesh for the First Block 

■<m\m 
Space 

FIG. 3.2. The memory bound strategy is used for a traveling pulse that moves with constant 
speed from left to right. Left: The original uniform mesh and a contour plot of the number of 
predicted elements of new sub-elements Nelem.children. The scale is from dark (low) to white 
(high). Right: The predicted number of new sub-elements Nelem_children for the first block, which 
consists of three adjacent space-time slabs from the original discretization. 

3.3.2. A correlation strategy. In the second strategy, we aim to choose blocks 
in order to use a relatively small number of elements, so Nmax may be considerably 
smaller than for the first algorithm. This strategy forms a block by grouping to- 
gether adjacent coarse-scale space-time slabs whose predicted number of elements 
Nelem.children arc close. 

Ill [14], we consider the problem of detecting significant overlap of local element 
contributions for different computations. Following the approach there, given two 
vectors v, w whose coefficients are element contributions to an error estimate, we 
define their correlation to be c(v, w) — v ■ w. We say that v is significantly correlated 
with w if 

c(v,w) 
1ÜMT > 7i and 

-       cfu.i 
1(1 —   -A-=i; NP 

<72- 

where 0 < 71,72. The first condition insures that v has a suitable large projection 
onto w while the second condition corrects for differences in scale between v and w 
(consider \\v\\ > ||w|| so that c(v, w) > ||w||). 

We implement the new criterion for creating blocks by choosing to add the next 
time slab to a current block based on the correlation criterion. 

3.3.3. Global strategies. In the first two strategies for creating blocks, we 
sweep through time. We can also use a bisection search beginning with the original 
large block and subdividing to find acceptable blocks. In analog to the difference 
between the standard global strategy for space mesh refinement to achieve the Prin- 
ciple of Equidistribution and the local-error control approach, the bisection search is 
a global strategy that can be a more efficient way to achieve equidistribution. 
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4. Computational Examples. We apply the block adaptive algorithms to sev- 
eral prototypical examples in one and three space dimensions. The one dimensional ex- 
amples illustrate several key points when implementing block-adaptive methods, while 
the three dimensional examples include a traveling wave front, a solution that under- 
goes time- and space-localized perturbations, and a periodic motion in a convection- 
dominated flow. 

The forward problems and adjoint problems are solved with linear and quadratic 
elements in space and dGO and cGl in time respectively. The one dimensional ex- 
amples are computed using the Matlab code ACES [25]. The three dimensional ex- 
amples are performed on a hexahedral mesh using a trilinear spatial basis for the 
forward problem and a triquadratic basis for the adjoint. Local mesh refinement is 
accomplished by the use of hanging nodes where one hanging node per edge or face 
is allowed. Conformity of the basis is obtained by interpolation of the surrounding 
regular nodes. The use of an hierarchical octree-based data structure assists refine- 
ment but also allows for de-refinement when the element indicators are small. For the 
convection driven flow problem, SUPG is employed for both the forward and adjoint 
problems, with parameter 

1 
(1/At + U/h) ' 

where At is the time step and U is the speed of the convection field at the current 
time, i.e., U = ||jö||2 in (4.5). This is not an obstacle for the block-adaptive frame- 
work, as we simply modify the theoretical convergence rate p in the computation of 
Nelem.children in (3.13). 

4.1. Example One: Projection errors between blocks. We illustrate the 
necessity for addressing the effect of transferring solutions between space-time blocks 
with a simple one-dimensional example involving a traveling wave. 

Ut — uxx = f(x, t), 0 < x < 1, 0 < t, 
u(0,t) = u(l,t) = ß(t), 0<f, (4.1) 

^u(x, 0) = tanh(a(x - 0.2)),    0 < x < 1, 

where a = 50 and / and ß are chosen to give an exact solution u = tanh(a(x—I — 0.2)). 
We solve with a coarse mesh using h = 0.1 and time step k = 0.05 from initial time 
0 to final time 0.6. The quantity of interest is the average space-time error. We 
compute a fine scale solution using two blocks derived from the coarse scale solution. 
The first block, t = [0,0.3], uses a finer spatial mesh in the region x € [0.1,0.6], while 
the second block uses a fine mesh in the region [0.5,1], so the overlap is minimal and 
and the predictions for refinement areas are incorrect. Consequently, the approximate 
traveling wave travels too quickly. The first block solution at t. = 0.3 and its projection 
onto the second block at t — 0.3 is displayed in Fig. 4.1. 

In Fig. 4.1 we illustrate the a posteriori use of (2.9) to correct the projection 
error. Block 1 is computed using the predicted fine scale mesh. Block 2 is tested for 
significant projection error using (2.9) using the fine scale solution for Block 1 and 
the mesh for Block 2 is refined if the elementwise projection error exceeds LATOL. 
We note that the overlap strategy for the projection error in §3.2.4 also works well in 
this particular example. 

4.2. Example Two: Coarse scale resolution. Since we are using the coarse 
scale discretization to predict the global behavior of the solution on the fine scale, 
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FIG. 4.1. Problem (4-1)- The circles indicate the spatial meshes used in each of the two blocks. 
Left: the solution on Block 1. Middle: the projection of the approximate solution in block 1 onto 
the mesh in block 2. Right: the solution onto Block 2 after using the projection error estimate 
(2.9) to correct significant projection errors between the two blocks. This demonstrates the possible 
consequences when the meshes for neighboring blocks do not overlap sufficiently. 

it is important to insure that the coarse scale discretization is not too coarse. (This 
is a difference between the block adaptive approach and a standard adaptive mesh 
refinement, which is generally started with a very coarse mesh.) This issue is especially 
important for nonlinear problems since linearization is used to define the adjoint 
problem, which in turn provides the means to quantify the effects of cancellation and 
accumulation of errors. 

Consider the one-dimensional nonlinear parabolic equation 

ut - j^uxx = a(u - 1)(1 - u2),    -1 < x < 1, 0 < t < 0.6, 

u{0,t) = -1, u(l,t) = 1, 0<t, 

u(x,0) =tanh(a(x-0.2)), -1 < x < 1, 
(4.2) 

We choose a to obtain the same solution as the example in § 4.1, u = tanh(a(a; - 
t - 0.2)). The quantity of interest is the average space-time error. For the coarse 
discretization, we use h = 0.05 and k = 0.05. These choices provide an excellent 
coarse scale discretization for the linear example in § 4.1 but does not work well for 
the nonlinear version. We show two snapshots of the solution u in Fig. 4.2 at t = 0.3 
and t = 0.6. The wave-speed is predicted inaccurately, which leads to a poor block 
selection and this subsequently affects the fine scale accuracy. Using a coarse scale 
discretization with h = 0.1 and k — 0.1 yields inaccurate results. 

1.5 
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-0.5 
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-1.5 
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-1.5 
0       0.2       0.4       0.6       0.8 

FlG. 4.2. Problem (4-2).  Correlation strategy with an insufficiently accurate coarse-scale solu- 
tion. Solution on the adapted mesh at t = 0.3 and t = 0.6 respectively. 

The poor predictions based on the coarse-scale discretization can be avoided by 
slightly enriching the discretization with a finer time step. We use a coarse discretiza- 
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tion with h — 0.05 and k = 0.01 and the correlation strategy to produce blocks. The 
approximate solution on the adapted mesh at t = 0.45 is shown in Fig. 4.3. 

0       0.2       0.4       0.6       0.8 I 

FlG. 4.3. Problem (4-S). Correlation strategy with an improved coarse-scale solution. Solution 
on the adapted mesh at t = 0.45 on blocks 3 and 4 respectively. 

4.3. Example three: A traveling wave solution. This example is a wave 
propagating along the main diagonal of the unit cube (Q, = [0,1] x [0,1] x [0,1]). The 
governing equation is 

ut -Au = f(x, t), 

u(x, t) = 0, 

i e if, o < (, 

xedn,o< t, 
ji{x, 0) = (x'i - a.-[)(x'2 — a,'2)(x'3 - £§) arctan(£^2 \Jx\ + x\ +Z3),    x £ P., 

where c = 75 and / is constructed to yield the exact solution 
(4.3) 

\/3      ^     ,cv/3 
u = —— arctan(—— • 

o o 

lfi ~\~ lo  -p »Co  —  11. 

The coarse block solution uc is constructed on an 8 x 8 x 8 uniform mesh using 
hexahedral meshes with an initial time step of 0.1. The quantity of interest is the 
time average of the solution value. The memory bound strategy is used to construct 
the discretization blocks with ATOL = 0.000178 and Nmax=50000. Block information 
is given in Table 4.1. As might be expected, all of the blocks use approximately the 
same number of elements. We show contour plots of the solution on "slices" of some 
of the block meshes along the plane x = 0.5 in Fig. 4.4. 

Block Tb-i Tb # vertices # hexahedra 

1 0 0.4 58711 50394 
2 0.4 0.6 63219 54503 
3 0.6 0.7 72267 61265 
4 0.7 0.8 62626 52368 
5 0.8 1 64764 54860 
6 1 1.1 62790 54377 

TABLE 4.1 
Problem (4-3).  Blocks resulting from the memory bound strategy. 

4.4.  Example Four:  Localized forcing in space and time. This example 
contrasts the difference in the blocks produced by the memory bound and correlation 



BLOCKWISE ADAPTIVITY 19 

FIG. 4.4. Problem (4-3). Memory bound strategy. Slices through the mesh perpendicular to the 
X-axis at x = 0.5. Upper left: t = 0 (block 1). Upper right: t = 0.44 (block 2). Lower left: t — 0.6 
(block 3).  Lower right: £ = 1.1 (block 6). 

strategies when solving an equation with source terms that arc localized in space and 
time. The governing equation on the unit cube $1 is 

ut - Au = 50e-(Ql(I-Xl>a+(t-tl)J) + 20e-(Q2(I-I2)2+(t-i2)2),   x g £1,0 < t, 

u(x,0)=0, x 6 £J, 
(4.4) 

with homogeneous Neumann boundary conditions on all the sides except the bottom 
where a homogeneous Dirichlet condition is imposed. We choose «i = 50, a?, = 10, 
ti = 1, t2 = 10, xi = (0.125,0.125,0.125) and x2 = (0.75,0.5,0.75). The quantity of 
interest is the time average of the solution value. 

We use a coarse discretization consisting of an 8 x 8 x 8 uniform hexahedral mesh 
and time step of 0.1. With ATOL = 0.00010044 and Nmax = 50000 we show the 
block information for the memory bound and correlation strategies respectively in 
Table 4.2 and Table 4.3. The algorithms lead to significantly different block meshes. 



20 V. CAREY, D. ESTEP, A. JOHANSSON, M. LARSON, AND S. TAVENER 

Block T6-i Tb # vertices # hcxahedra 

1 0 1.1 59465 54125 
2 1.1 1.2 63112 57772 
3 1.2 2.4 45359 40958 
4 2.4 11.9 12383 10165 
5 11.9 14.9 2029 1478 

TABLE 4.2 
Problem (4-4)- Blocks resulting from the memory bound strategy. 

Block r6_i Tb # vertices # hexahedra 

1 0 1.1 63112 57772 
2 l.i 1.2 63112 57772 
3 1.2 1.6 45359 40958 
4 1.6 2.5 9611 8037 
5 2.5 2.9 1968 1436 
6 2.9 8.5 966 652 
7 8.5 9 2617 1926 
8 9 10.8 12051 10382 
9 10.8 11.3 7363 5860 
10 11.3 12.6 3139 2360 
11 12.6 14.9 729 512 

TABLE 4.3 
Problem (4-4)- Blocks resulting from the correlation strategy. 

The correlation strategy chooses many more blocks, but many of the blocks have very 
low numbers of elements. 

We show planar slices near Xi and x-i of the meshes for Blocks 1 and 3 in Fig. 4.5. 
For comparison, we show planar slices perpendicular to the x-axis near x\ and x'2 of 
the meshes for blocks constructed using the two strategies in Fig. 4.6. Both strategies 
result in similar meshes near X2 at time t = 10. However at t — 8.8, the correlation 
strategy leads to coarse meshes that are not produced by the memory bound strategy. 
The mesh resulting from the memory bound strategy retains the refinement resulting 
from the earlier perturbation near X\ at t = 1. 

4.5.  Example Five:   Periodic motion in a convection-dominated flow. 
This example has a heat source with a forced oscillating convective term within the 
unit cube P. to produce an "orbiting" zone of perturbation. The governing equation 
is 

ut + ß ■ Vu - Aw = /, 

u(x, t) = 0, 

l«(x,0)=0, 

x6n,o< t< l, 
i£3f!,0<(<l, 

sen, 
(4.5) 

with ß = (20(cos{-nt.)sm{2nt),sin{nt)sin(2nt),cos{2TTt)) and f(x) = e-™tä+xl+x%). 
The quantity of interest is the time average value. The coarse discretization used 
4913 vertices and at time step of 0.01. The blocks constructed by the memory-bound 
strategy using ATOL = 0.00044 and Nmax=50000 are described in Table 4.4. 
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FlG. 4.5. Problem (4-4)- Memory bound strategy. Slices through the mesh perpendicular to the 
x-axis. Upper left: Slice near x\ at t — 1 (block 1). Upper right: Slice near X2 at t = 1 (block 1). 
Lower left: Slice near x\ at t = 10 (block 4)- Lower right: Slice near xi att — 10 (block 4)- 

FIG. 4.6. Problem (4-4)- Slices through the mesh perpendicular to the x-axis. Left: Correlation 
strategy. Slice near X2 at t = 10 (block 8). Middle: Correlation strategy. Slice near x\ at t = 8.8 
(block 7).  Right: Memory bound strategy.  Slice near x\ at t = 8.8 (block 4)- 
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Block n Tb+i # vertices # hexahedra 

1 0 0.09 58799 _j 51066 
2 0.09 0.15 58424 50289 
3 0.15 0.27 58393 50359 
4 0.27 0.61 59102 50744 
5 0.61 0.99 28395 23388 

TABLE 4.4 
Problem (4-5). Blocks resulting from the memory bound strategy. 

We provide "slices" through the mesh that are perpendicular to the z-axis at 
x — 0.5 for four representative times in Fig. 4.7. 

5. Conclusions. In this paper, we consider adaptive algorithms for evolution 
problems that use a sequence of "blocks" in time which employ fixed, non-uniform 
space meshes. Blockwise adaptive algorithms provide a way to balance the goal of 
achieving desired accuracy using discretizations with relatively few degrees of freedom 
with the computational overhead associated with load balancing, re-meshing, matrix 
reassembly and error estimation. Block adaptive algorithms achieve this balance by 
minimizing the number of mesh changes. However, a major issue is determining block 
discretizations from coarse scale solution information that achieve the desired accuracy 
and efficiency. We describe several strategies to achieve this goal using adjoint-based 
a posteriori error estimates. Wc demonstrate the behavior of the proposed algorithms 
as well as several technical issues in a set of examples. 
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Appendix A. Detailed description of a block adaptive algorithm. 

The notation used in our block adaptive algorithm is as follows. 

1. Ntimestep = current number of time steps 
2. Nelem(j) = number of space elements in timestep j, i.e., for /. € [tj-i,t-j] 
3. Ntimestep-children(j) = number of subintervals into which timestep j is 

to be divided 
4. Nelem.children(i, j) = number of subelements into which finite element i is 

to be divided in timestep j 
5. The 6th "block" is time interval [X(,_i,Ti,] = [ttß, tb,Nb] 
6. The 6th "block" comprises timesteps jb-i, ■ ■ ■ ,jb, i-e., Nt, = jj, — jb-i, tb,o — 

tjb-l and lb,Nb = tjb. 
7. block(i,b) = number of intervals the parent element i will be divided into 

on block 6. 
8. Nelem.block(b) = number of elements in block b. 
9. We use the MATLAB colon operator : to denote the full row or column. 

10. The parameter 9 governs how often a mesh is coarsened; 6 ss 10 works well. 
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Algorithm A.l A memory-bound strategy 
Input error tolerance TOL, maximum number of elements in any block Nmax, the 
initial coarse-scale discretization for the forward problem, and the coarse-scale 
discretization for the adjoint problems 
Solve forward problem (1.1) for U on [0,T] 
Project forward solution onto coarse-scale adjoint problem mesh 
Solve adjoint problem (2.4) on coarse scale mesh and compute E(U) 
Compute LATOL, Mx, Mt (3.6),(3.5) 
for j = 1,... ,Ntimesteps do 

Compute Ntimestep.children(j) (3.13) 
for i = l,..., Nelem(j) do 

Compute Nelem.childrenCi, j) (3.16) 
end for 

end for 
Ntimesteps <— ^ "1

me3teps Ntimestep.children(j) 
Each subinterval of [tj_i,Lj] inherits Nelem_children(i, j) 
6 = 1, T0 =0, Tl=kl, jo = 1, i = 2 
block(:,b) <— Nelem_children(:, l) 
Nelem.block(b) <- £iblock(i,b) 
while Tb < T do 

while Nelem.block(b) < Nmax     and 
Nelem.block(b) < 9 x ^eiHj) Nelem.children(i, j) do 

jb <- j 
Tb<^Tb + kj 
block(:,b) <— max[block(:,b),Nelem_children(:, j)j 
Nelem^block(b) = ^iblock(i,b) 
■j <" i + 1 

end while 
6<-6 + l 

end while 
for i = 1,... ,b do 

Compute new mesh for block 6 
Optional: Estimate projection error and correct predicted meshes if necessary 

end for 
for i = 1,..., 6 do 

Solve forward problem on block b for U 
Project U onto mesh for block 6+1 
Optional: Compute projection error between blocks and correct meshes 

end for 

To implement the correlation-based strategy, we alter the block selection criteria 
(£]block(6) < Nmax) with a step which accepts a block if block(:,6) is correlated to 
Nelem.children(:, j) and Nelem.block(b) is less than Nmax. 

The algorithm assumes that the blocks are always generated (even on repeat solve 
cycles) using the coarse mesh as a base. The algorithm may be easily modified to 
work recursively on the blocks. It may also be modified, with a little more care, to 
allow merging and splitting of blocks during repeated solves. 
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ERROR ESTIMATES FOR MULTISCALE OPERATOR 
DECOMPOSITION FOR MULTIPHYSICS MODELS 

1.1     Introduction 

Multiphysics, multiscalo models that couple different physical processes acting 
across a large range of scales are encountered in virtually all scientific and engi- 
neering applications. Such systems present significant challenges in terms of com- 
puting accurate solutions and for estimating the error in information computed 
from numerical solutions. In this chapter, we discuss the problem of computing 
accurate error estimates for one of the most common, and powerful, numerical 
approaches for multiphysics. multiscale problems. 

1.1.1    Examples of multiphysics models 

Without any attempt to be complete, we describe three examples of multiphysics 
models that illustrate some different ways in which physical processes may be 
coupled. 

Example 1.1 A thermal actuator A thermal actuator is a MEMS (micro- 
electronic mechanical switch) device. A contact rests on thin braces composed of 
a conducting material. When a current is passed through the braces, they heat 
up and consequently expand to close the contact, see Fig. 1.1. The actuator is 
modeled by a system of three coupled equations, each representing a distinct 

FIG. 1.1. Sketch of a thermal actuator. 

physical process acting on its own scale. The first is an electrostatic current 
equation 

V-(CTVUI) = 0. (1.1) 
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governing potential «i (where the current is J = 
state energy equation 

-UVMI). the second is a stcady- 

V • (K(«2)VU2) = cr(Vui ■ Viti), (1.2) 

for the governing temperature u2, and a linear elasticity equation giving the 
steady-state displacement w3. 

V-(\tr{E)I + 2LiE-ß(u2-U2,ref)l)=0:    E= (VM3 + VUJ)/2.      (1.3) 

This is an example of "parameter passing"; in which the solution of one com- 
ponent is used to compute the parameters and/or data for another component. 
Note that the electric potential u\ can be calculated independently of «2 and «3. 
The temperature u2 can be calculated once the electric potential U\ is known, 
while the calculation of displacement u3 requires prior knowledge of u2, and 
therefore of Mi. 

Example 1.2 The Brusselator problem First introduced by Prigogine and 
Lefevcr (Prigogine and Lcfevcr. 1968) as a model of chemical dynamics, the" 
Brusselator problem consists of a coupled set of equations, 

( du 
dt 

0 

1,   £Tu] 
Kl   Ox2 = a - (ß + l)ui + u\u2, 

= ßU\  - ufu2. 
lii(O.t) =Ui(l,t) = a, u2{0,t) = u2{l.t) 

,ui(a;.0) =uifi{x). u2{x,0) = u2,u(x), 

~bt -A,2 
d2U! 

■ ß/a, 

xe (0, l),t >0. 
16 (0, l),t > 0. 
t >0, 
xe (o,i): 

(1.4) 

where M| and u2 arc the concentrations of species 1 and 2. respectively. Solu- 
tions of the Brusselator problem exhibit a wide range of behavior depending on 
parameter values. 

Reaction-diffusion equations arc an example of a problem that combines dif- 
ferent physics - in this case, reaction and diffusion - in one equation. The generic 
picture for a reaction-diffusion equation is a relatively fast, destabilizing reaction 
component interacting with a relatively slow, stabilizing diffusion component. 
Thus, the physical components have both different scales and different stability 
properties. 

Example 1.3 Conjugate heat transfer between a fluid and solid object 
We consider the flow of a heat-conducting Newtonian fluid past a solid cylinder 
as shown in Fig. 1.2. 

FIG. 1.2.    Computational domain for flow past a cylinder 
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The model consists of the heat equation in the solid and the equations gov- 
erning the conservation of momentum, mass and energy in the fluid, where wc 
apply the Boussincsq approximation to the momentum equations in the fluid. 
The temperature field is advectcd by the fluid and couples back to the momen- 
tum equations through the buoyancy term. 

Let fif and Q5 be polygonal domains in R2 with boundaries dQF 
and 3Qs 

intersecting along an interface T/ = dQs^dQF. The complete coupled problem 

-ßAu + po (w ■ V) u + Vp + PoßTFg = p0 (1 + ßT0) g, x <E 9,F, 

-V-u = 0. x € flF, 

-kFATF + püCp{u ■ VT» = QF: x e QF, 

Ts = TF, 
(1.5) 

kF(n-VTF) = ks{n-VTs), x^   i-. 

-ksATs = Qs, xeQSl 

where po and To are reference values for the density and temperature respectively. 
p is the molecular viscosity, ß is the coefficient of thermal expansion. cv is the 
specific heat, kF and ks arc the thermal conductivities of the fluid and solid 
respectively. QF and Qs are source terms and n is the unit normal vector directed 
into the fluid. Note that u is a vector. 

Wc define VU:D and TUtN to be the boundaries on which wc apply Dirichlct 
and Neumann conditions for the velocity field respectively, and set 

du 
My- = 9u,N:    x € iU)N. 

Similarly, we define TTFD: ^TF,N- ^TS,D-, 
and TXS,N 

t0 be the boundaries on 
which we impose Dirichlet and Neumann conditions for the temperature fields 
in the fluid and the solid respectively, and set 

TF = grF,D: x 6 TTF,D, 

kF{n-VTF) = gTr,N: X€TTF,N; 

Ts = grs,D: x G rTs,D-, 
,ks{n- VT5) =Srs,/V: xerTs,N- 

This presents a class of problems where different physics in different physical 
domains are coupled through interactions across a common boundary. 

1.1.2    Challenges and goals of multiscale, multiphysics models 

Multiscalc, multiphysics models arc characterized by intimate interactions be- 
tween different physics across a wide range of scales. This poses challenges for 
solving such problems, e.g. 
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Accurate and efficient computation Computing information that depends 
on solution behavior occurring at very different scales is problematic. It is 
rarely possible to simply to use a discretization sufficiently fine to resolve 
the finest scale behavior. 

Complex stability A multiphysics model generally offers a complex stability 
picture that results from a fusion of the stability properties of different 
physics. For example, consider a reacting fluid that combines fluid flow 
with the dynamical properties of reaction-diffusion equations. 

Linking different physics across scales Understanding the significance of link- 
ages between physical components and how those affect model output is 
another complicated issue. In many situations, the output of one physi- 
cal component must be transformed and/or scaled to obtain information 
relevant to the other components. 

Another complication is the range of applications of multiphysics models. 
These include 

Model prediction Perhaps the chief goal of mathematical modeling is to pre- 
dict the behavior of the modeled system outside of the range of physical 
observation. 

Sensitivity analysis The reliability of model predictions depends on analyzing 
the effects of uncertainties and variation in the physical properties of the 
model on its output. 

Parameter optimization In design problems, the goal is to determine opti- 
mal parameter values with respect to producing a desired observation or 
consequence. 

Such applications require computation of solutions corresponding to wide range 
of data and parameters. We expect the solution behavior to vary significantly 
and the ability to obtain accurate numerical solutions therefore to vary as well. 
This raises a critical need for quantification and control of numerical error. 

The solution and application of multiphysics. multiscale models invoke two 
computational goals: 

• Compute specific information from multiscale. multiphysics models accu- 
rately and efficiently 

• Accurately quantify the error and uncertainty in any computed information 

The context is important: 

It is often difficult or impossible to obtain solutions of multiscale, multiphysics 
models that are uniformly accurate throughout space and/or time 

Thus, we are interested in computing accurate error estimates for solutions that 
are relatively inaccurate. This is an important consideration, given that much of 
classical error analysis is derived under conditions that amount to assuming that 
the numerical solution is in the "asymptotic range of convergence", meaning that 
the solution is sufficiently accurate that the rate of convergence can be observed 



Introduction 5 

by uniform refinement of the discretization. It is rarely possible to reach this 
level of discretization in a multiphysics, multiscale problem. 

1.1.3    Multiscale, multidiscretization operator decomposition 

Multiscale. multidiscretization operator decomposition is a widely used tech- 
nique for solving multiphysics, multiscale models. The general approach is to 
decompose the multiphysics and/or multiscale problem into components involv- 
ing simpler physics over a relatively limited range of scales, and then to seek the 
solution of the entire system through some sort of iterative procedure involv- 
ing numerical solutions of the individual components. We illustrate in Fig. 1.3. 
In general, different components are solved with different numerical methods as 
well as with different scale discretizations. This approach is appealing because 
there is generally a good understanding of how to solve a broad spectrum of 
single physics problems accurately and efficiently, and because it provides an 
alternative to accommodating multiple scales in one discretization. 

Fully Coupled Multiscale Operator Decomposition Solution 

". Ph.« 

[ upscale  j       (downscalc]    C upscale J Qlownscalej   C upscale  ) (downscalel 

Physics 2|     ) (       Physics Z2    ) C       Physics 2j 

FIG. 1.3. Left: Illustration of a multiscale, multiphysics model. Right: Illustra- 
tion of a multiscale operator decomposition solution. 

Example 1.4 A classic example of multiscale operator decomposition is oper- 
ator splitting for a reaction-diffusion equation, 

du 
— = eAu + /(u), xeQ,0<t, 

suitable boundary conditions,    x€dQ,0<t, (*■■") 

U{;0)=U0() 

where Q C R^ is a spatial domain and / is a smooth function. Accuracy con- 
siderations dictate the use of relatively small steps to integrate a fast reaction 
component. On the other hand, stability considerations over moderate to long 
time intervals suggests the use of implicit, dissipative numerical methods for in- 
tegrating diffusion problems. Such methods are expensive to use per step, but 
relatively large steps can be used on a purely dissipative problem. If the reaction 
and diffusion components are integrated together, then the small steps required 
for accurate resolution of the reaction lead to an expensive computation. 

In a multiscale operator splitting approach, the reaction and diffusion com- 
ponents arc integrated independently inside each time interval of a discretization 
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of time and "synchronized" in some fashion only at the nodes of the interval. The 
reaction component is often integrated by using significantly smaller sub-steps 
(c.g 10~5 smaller is not uncommon) than those used to integrate the diffusion 
component; which can lead to a tremendous computational savings. 

Employing the method of lines, if we discretizc in space using a continuous; 
pieccwisc linear finite clement method with M elements, sec Sec. 1.4.1. wc obtain 
the initial value problem: find y £ RA/ such that 

y = Ay(t) + F{y{t)),    0<t<T, 

V(0) = 2/0, 

where A is an I x I constant matrix representing a "diffusion component" and 
F(y) = (Fi(y), F2{y), ■ ■ ■, Fi(y))T is a vector of nonlinear functions representing 
a "reaction component". 

Wc first discretizc [0,T] into 0 = t0 < t\ < t2 < ■ ■ ■ < t^ =T with diffusion 
time steps {Atn}n_l, Atn = tn - t„_l, and At = maxi<ri<jv(Ata). Wc define a 
pieccwisc continuous approximate solution 

m = tjKr§n-i + t~At~1 in- *»-i^t^*»=        (L8) 
with nodal values {yn} obtained from the following procedure: 

Algorithm 1 Abstract Operator Splitting for Reaction-Diffusion Equations 
Set y0 = y0 

for n = 1. • ■ • . N do 
Compute y'(t~) satisfying the reaction component 

yr = f(y'(t))-  tn-i <t<tn, 
yr(t+_l) = !/„_! (1-9) 

Compute yd{tn) satisfying the diffusion component 

lyd = Ayd{t):    tn-i<t<tn, 

yd{tn-i) = yr(tn) 
(1.10) 

Set yn = yd(t-) 
end for 

With a little thought, wc recognize that this algorithm has the potential 
to be a multiscale solution procedure since wc can now resolve the solution of 
each component on independent scales. That is one benefit of using operator 
decomposition. Unfortunately, this decomposition has unforsccn effects on both 
accuracy and stability. The reason is that wc have discretized the instantaneous 
interaction between the reaction and diffusion components. 
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Example 1.5 In (Estep et ai.. 2008a). wc consider a problem in which the 
reaction component exhibits finite time blow up when undamped by the diffusion 
component. The problem is 

y + \y = y2,       t > 0.. 

1/(0) = 2/o € R, 

which has exact solution 

when A/0. The exact solution exists for all time and tends to zero as t —> oo 
when A > j/o- On the other hand, there is finite time blow up. e.g. y —> oo at a 
finite time, if A < y0. 

Applying the operator splitting to (1.11), the solutions of the two components 
and the operator splitting solution arc, 

l - yn-i{t - tn-i) i-At,l2/„_i 

when the reaction component is defined. We sec that decoupling the smoothing 
effect provided by instantaneous interaction with the diffusion component means 
that the reaction component can blow up in finite time. This has an effect on 
numerical solution. 

Wc consider the time steps introduced above, {Atn}n_l: to be diffusion time 
steps. For each diffusion step, wc choose a (small) time step As,, = A£„/A/„ 
with As =s maxi<,t<jv As,,, and the nodes tn-\ = s,),, < sln < ■■■ < sJ\in:„ = 
ta (sec Fig. 1.4). Wc associate the time intervals /„ = [t„-i.,tn] and /,„„ = 
|'m-l,iii'm,ii] w'tn these discretizations. Without going into details, wc solve 

'o       At        'l           Al,          l2        At        h      Al      *4        Al        's 
Diffusion Integration:    I ' 1 = 1 1  1 ? 1  

As        SIU ""■ SM,.2      As.      S0.4     ""'    SM4,4 

Reaction Integration:   I   I   I   I   I   I—I—I—I    I    I   I   I   I   I   I  I   I  I   I  I   I   I   I   I   I  
S0,l      •••      SM,.I AS2 S0J       ••■      SM„3 

FlG. 1.4.  Discretization of time used for multiscalc operator splitting 

the components (1.9). (1.10) using the forward and backward Eulcr method 
respectively, 

YT7n,n = Yr7n-l,n + /P""«-!,») &>a,       ¥*'  = Y*Z_X + AYd'n At,,,. 

See Sec. 1.4.4 for details on discretization of evolution problems. We compute a 
piecewisc linear discrete approximation Y using the nodal values of Yd. 
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On the left side of Fig. 1.5. we plot the true solution and the nodal values 
of the approximation Y computed with N = 50 diffusion steps and M = 1 
reaction step per diffusion step. The approximation is reasonably accurate. Next, 

FIG. 1.5. Plots of the approximation Y and the true solution. Left: N = 50, 
M = 1. Middle: N = 10, M = 5. Right: N = 5, M = 10. The nodal values 
of Y are denoted by the larger points while the smaller points denote node 
values of the reaction component Yr'. 

we show the results when the diffusion step is increased by choosing N — 10 
and, in order to maintain the same resolution of the reaction component, wc 
correspondingly increase to M = 5 reaction steps per diffusion step. The node 
values of y arc relatively close to those of y. The subsequent nodal values of 
the reaction component solution yr inside each step move away from the true 
solution. This large departure is somewhat counteracted by application of the 
diffusion operator. The reaction components exhibit significant growth inside 
each diffusion step, which severely affects accuracy. 

If wc increase the diffusion step by taking N = 5 and maintain resolution in 
the reaction component by taking M = 10, the approximation becomes even less 
accurate. If we increase the diffusion step further, then the reaction component 
actually blows up inside a diffusion step. 

We emphasize that the error in this example is a consequence of a kind of 
instability introduced by multiscale operator decomposition. Wc will sec below 
that multiscale operator decomposition commonly affects both accuracy and 
stability in a wide variety of problems. 

1.2     The key is stability. But what is stability ... and stability of 
what? 

Stability is likely one of the most shopworn terms in mathematics; given so many 
meanings so as to cause a high probability of mis-communication in any mixed 
crowd. Nonetheless, stability is the key to quantifying the effects of error and 
uncertainty on the output of a computed model solution. 

Generally, it is impossible to give a definitive definition of stability in the 
context of a multiphysics model. A computational mathematician might think 
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in terms of numerical stability, with instability characterized by oscillations on 
the scale of the discretization. A mathematician in partial differential equations 
might be thinking in terms of wcll-poscdness, i.e. continuous dependence on 
data. A physicist might be worried about preserving the conservation of impor- 
tant quantities like mass and energy. A dynamicist might think in terms of the 
stability properties of stationary solutions and attracting manifolds. 

Indeed, all of these views of stability, and likely others, arc important in the 
right contexts. In fact, the only definitive thing to be said about stability is 
that it is very unlikely that just one view of stability will suffice when solving a 
multiphysics. multiscale problem. 

1.2.1    Pointwise stability of the Lorenz problem 

To illustrate the complexity of stability, we consider the infamous Lorenz prob- 
lem, 

Ü\  = — lOUl + 10ll2, 

Ü2 = 28«i - u2 - uiu3,    0<t, (1.13) 

The Lorenz equations were derived by Lorenz (Lorenz, 1963) as a gross simplifi- 
cation of a weather model to explain why weather predictions become inaccurate, 
after a few days. We have chosen parameter values believed to lead to chaotic be- 
havior. In Fig. l.C we plot a solution. All solutions rapidly approach the "strange 

20       -30 

FIG. 1.6.  Solution of the Lorenz problem (1.13) corresponding to initial condi- 
tion (-9.408,-9.096,28.581). 

attractor" where they subsequently remain. The dynamical behavior is always 
the same in qualitative terms. There arc two non-zero steady state solutions and 
a generic solution is cither "orbiting" one of these solutions or transitioning be- 
tween orbits. The orbits spiral away from the steady-state solution at the center 
until a point when a solution is sufficiently far away from the fixed point, where- 
upon it moves to orbit around the other fixed point. In a crude way, solutions 
behave in a very predictable fashion. 
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Chaos is often described as "sensitivity to initial conditions", which means 
that solutions that begin close by to each other eventually move apart. In Fig. 1.7. 
we plot a second solution to the Lorenz problem that begins near the solution 
plotted in Fig. 1.6 along with the distance between the solutions. The two solu- 

FIG. 1.7. A second solution of the Lorenz problem (1.13) corresponding to initial 
condition (—9.408,-9.096001,28.581) and the pointwisc difference between 
the two solutions. 

tions start close together and actually remain close until around time 17.5, when 
there is a rapid increase in their separation. For a brief period between 18 and 21, 
the separation remains fairly constant, and then it begins to increase again, with 
another very rapid increase around 24. All solutions must remain in a compact 
region around the origin, so at some point the distance between the solutions 
reaches the order of size of the compact region and cannot grow further. 

We conclude that two solutions that are pointwisc close at some time eventu- 
ally diverge pointwisc at a later time. The chaotic nature of the Lorenz problem 
means that it is difficult to predict the pattern of orbits around the fixed points 
with any accuracy very far into the future. On the other hand, nearby solu- 
tions may remain close for quite some time and may even become closer before 
eventually diverging. 

The source of chaotic behavior in the Lorenz problem is actually rather com- 
plex. (Estep and Johnson, 1998). However, one important factor is relatively 
easy to explain. Following (Estep and Johnson, 1998), in Fig. 1.8, we show a plot 
looking straight down the vertical axis at parts of many solutions. The solutions 
shown in the lower left corner arc orbiting around one of the nonzero fixed points 
or, if they are in the "outer" orbit, moving to the neighborhood of the other fixed 
point. Likewise, the solutions plotted in the upper right corner arc either orbiting 
around a fixed point or moving to a neighborhood of the other fixed point. 

We note that there arc two solutions in the lower left-hand region, that are 
very close until they approach the vertical U3 axis but then rapidly move apart 
after that. In fact, there is a separatix, or manifold, coming out of the U3 axis 
that separates solutions taking another orbit around a fixed point from those 
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Leaving orbit 

f 
manifold 

,/ 

i 
FIG. 1.8. Left: Looking straight down the U3 (vertical) axis at many solutions 

of the Lorenz equations (1.13). Solutions passing through a neighborhood of 
a scparatix coming out of the v.3 axis, shaded in the figure, arc very sensitive 
to small perturbations while they arc in that neighborhood. Right: A plot of 
the separatix. 

that transition to the other fixed point. Solutions on cither side of this manifold 
move apart rapidly. Thus, wc see how small perturbations can lead to rapid 
separation. Any solution that passes near the neighborhood of the scparatix, 
shaded in the figure, become very sensitive to small perturbations during the 
short time the solution remains in the neighborhood. Eventually, all solutions 
pass nearby the separatix and thus become sensitive to perturbation. Away from 
the neighborhood of the scparatix, the distance between solutions may grow or 
shrink slowly, e.g. at a polynomial rate. This explains the pattern of separation 
seen in the plot of distance between two solutions in Fig. 1.7. 

Not surprisingly, chaotic behavior affects numerical solutions as well. In 
Fig. 1.9, wc show the effects of varying step sizes on pointwise accuracy. Wc 

FIG. 1.9. Two numerical approximations of the Lorenz solution shown in Fig. 1.6 
are shown; the solution on the left is accurate while the solution on the right 
is computed with larger step sizes. The distance between the solutions is 
shown on the right. 
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plot the difference between the numerical solutions on the left in Fig. 1.10. The 

Errors 
Decrease 

FIG. 1.10.  Left: Plot of the pointwisc difference between the numerical solutions 
of Lorenz shown in Fig. 1.9. Right: A blowup of the difference for 0 < t < 12. 

pointwisc numerical error clearly follow an increasing trend, but it docs not 
increase monotonically. In fact, the pointwisc error actually decreases during 
some short periods of time, see the plot on the right in Fig. 1.10. 

1.2.2    Classic a priori stability analysis 

But what about the classic a priori stability analysis that is taught in courses in 
differential equations and numerical analysis (a priori means that it is carried out 
before any solutions arc computed)? Do these classic notions of stability present 
a reasonable picture for a particular solution? In fact, the answer is decidedly 
no in most cases. The classic view of stability for linear problems tends to be 
black and white; a particular solution is either stable or unstable with respect 
to perturbations. We see that this point of view fails for solutions of simple 
nonlinear problems, e.g. the Lorenz problem. 

Example 1.6 It is easy to illustrate the shortcomings of a priori stability analy- 
sis using error analysis of the numerical solution of a matrix system of equations. 
Consider a numerical solution y as y of a matrix system 

Ay = b, (1.14) 

computed using Gaussian elimination. The computable residual of Y is R — 
AY — b and the classic relative error bound ((Higham, 2002)) is 

lIfß<C<A)U (1.15) 

where the condition number K(A) = ||A|| ||A-1|| is a measure of the sensitivity 
of the solution of (1.14) to perturbations in the data. i.e. the stability properties 
of the inverse operator of A. In particular, 

l|A|| 
K(A) = 

distance from A to {singular matrices} 
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(To be precise, we have to specify norms, but that level of detail is not important 
here.) 

We now solve (1.14) using Gaussian elimination, where A is a random 800 x 
800 matrix, where'the coefficients in the random matrix arc uniformly distributed 
U{—1.1) on (—1,1). The goal is to determine the first component yl of the 
solution. The condition number of A is 6.7 x 104. Straightforward computation 
yields 

actual error in the quantity of interest ä 1.0 x 10~15, 

traditional error bound for the error « 3.5 x 10-5 

We sec that the traditional error bound is orders of magnitude larger than the ac- 
tual error and is essentially useless as far as estimating the error in the particular 
computed information. 

We remark that the bound (1.15) is a specific example of a general "mcta- 
theorcm", which reads 

Theorem 1.7 

^effect of perturbation on the'output of an operator^ 

< \\measure of stability of the operator]] x \\size of the perturbation]].    (1.16) 

In the linear algebra example, we have 

AY = b + R., 

hence we can think of the numerical solution Y as solving the linear system 
(1.14) with perturbed data b + R. 

The pessimism of a classic a priori stability bound is not surprising given a 
little reflection. After all. the goal of such a bound is to account for the largest 
possible error in a large class of solutions corresponding to a large set of data, not 
produce an accurate error estimate for particular information computed from a 
particular solution. The power of an a priori error bound is that it characterizes 
the general behavior of the numerical method. 

The situation for nonlinear problems is worse. For example, in nonlinear 
evolution problems, the classic stability analysis uses a Gronwall argument to 
obtain a bound in the form, 

effect of perturbation at time t <C e     x size of perturbation, 

where C and L are constants with L typically large (L is on the order of 100 in 
the Lorenz example). Such bounds are non-descriptive past a very short initial 
transient, e.g. even for the chaotic Lorenz problem. The factor CeLt plays the 
role of a condition number (for an absolute error estimate). 
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1.2.3    Stability for stationary problems 

There is a long tradition of conducting careful, precise analysis of stability for 
evolutionary problems and. in particular, distinguishing different types of sta- 
bility properties. It is perhaps fair to say that stability for stationary problems 
tends to be treated more crudely, at least for elliptic problems. This is unfor- 
tunate because stability is just as complex an issue for stationary problems as 
evolutionary problems. 

Example 1.8 To illustrate this claim, we consider an elliptic problem 

'L(u) = -V ■ ((.001 + | tanh(10(2/ + l)|)Vu) 

^50(x- 1.5)N 

50 

^u(x, y) = 0, (x.y)edtt. 

where a = 0, 1 and fi = [—2, 2] x [-2, 2]. This diffusion parameter is O(l) except 
for a narrow region around the line y = —1, where it dips rapidly to .001. When 
a = 0 there is no convection.and when a = 1, there is strong convection. We 
plot a solution with no convection in Fig. 1.11. 

■ Vu = f[x, y) = 10. ■   (i;t/)efi. 

2 -2 2-2 

FIG. 1.11.  Left: A plot of the solution of (1.17) with a — 0. Right: A plot of 
the effect of the perturbation p when a — 0. 

We now consider the effect of perturbing the data / to / + p by a very 
"pointed" function 

p(a;!2/) = 100xe(-1Ox^+1'2+(«-5)2», 

which is nearly zero outside of a small neighborhood of (—1..5). Because the 
problem (1.17) is linear, we can compute the effects directly. Namely with L{u) = 
f and U denoting the perturbed solution L(U) = / + p., we can compute the 
perturbation to the solution, w = U — u, directly as the solution of 

L(w) = L(U -u) = L{U) - L{u) = p. 

In Fig. 1.11, we plot the perturbation w to the solutions for a = 0 and a = 1. 
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We observe that the effect of the perturbation decreases dramatically to zero 
sufficiently far from the region where the perturbation is nonzero, e.g. close to the 
boundaries of x = 2 and y = —2, see Fig. 1.11. This kind of "decay of influence" 
is characteristic of the Greens function associated with Poisson's problem. The 
situation for more general elliptic problems is much more complex however. 

For example, convection has a strong effect on the way in which the pertur- 
bation disturbs the solution. In Fig. 1.12, we plot the solution with a = 1. Now, 
some of the effects of the perturbation arc felt right across the domain, even very 
near the boundary at y = —2. Note also that the perturbation does not decay 
uniformly in all directions. 

r-2 

FIG. 1.12. Left: A plot of the solution of (1.17) with a = 1. Right: A plot of 
the effect of the perturbation p when a = 1. Note how the influence "curves" 
because of the singular perturbation in the diffusion. 

In general, the "decay of influence" of the effects of a localized perturbation is an 
important stability property of elliptic problems. It has strong consequences for 
devising efficient adaptive mesh refinement for example. It can also be exploited 
to devise new approaches to domain decomposition, see (Estep et al., 2005). 
However, the decay is very problem dependent and exploiting it fully requires 
numerical solution of the adjoint problem in general. 

Wc can contrast these ideas with the classic analysis of elliptic stability, which 
typically yields a result of the form 

IMI,<c||p||.., 

for some appropriate norms || ||«, || ||*„, where p belongs in some reasonable space 
of functions and C is some constant independent of the choice of particular p in 
this space. We sec that such a result docs not describe the decay of influence in 
the example above. As with the linear algebra example, an a priori analysis of 
stability tends to be much too pessimistic when applied to a particular solution. 
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1.2.4    The meaning of stability depends on the information to be computed 

In the examples above, we concentrated on the stability of pointwise values. Bat. 
wc must broaden the point of view here. For example, a little reflection suggests 
that worrying about the pointwise behavior of Lorenz solutions is not very well 
motivated in terms of physical modeling. In whatever sense the Lorenz problem 
presents a model of weather, it is certainly not a pointwise representation of 
weather! Rather, it is the qualitative behavior of the Lorenz problem that is 
meant to represent some characteristic of weather patterns. It is more reasonable 
to consider a quantity of interest computed from solutions that better represents 
qualitative behavior of all solutions. 

This is an important observation because it turns out that the effect of per- 
turbations on a solution depends strongly on the information being computed 
from the solution. 

Example 1.9 To illustrate this, wc consider the average of the instantaneous 
distance from a solution of the Lorenz problem to the origin, see Fig. 1.13. The 
motivation is that all solutions must remain in a neighborhood of the origin. We 
compare results for numerical solutions with a coarse time step .001 and fine time 
step .0001, and sec that the distances are completely different after a moderate 
time. 

0      10     20     30    40     50     60     70     80 
Time 

FIG. 1.13. The quantity of interest is the average of the instantaneous distance 
from the solution to the origin. On the right, we plot the average instanta- 
neous distance for solutions with time steps .001 and .0001 respectively. The 
distances agree during an initial period and arc completely different after 
that. 

We give values for the average instantaneous distance along with the variance 
over three intervals in Table 1.1. The accuracy of the numerical solution appears 
to have little effect on the average distance. 

In order to verify this observation, we compare these results to the average 
distance to the origin computed from an ensemble of 100 accurate solutions, each 
computed using time step .0001 for 15 time units in Table 1.2. Initial values for 
these solutions were drawn at random from values of the long time solution after 
T = 50, insuring the initial values are distributed appropriately on the strange 
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Coarse Solution Fine Solution 
End Time Ave        Var Ave      Var 

20 
80 

320 

27.6        52.0 
26.5        79.5 
26.3       83.7 

27.6      51.9 
26.5      79.2 
26.3      83.0 

TABLE 1.1.  Average instantaneous distance of numerical Lorenz solutions to the 
origin computed with time steps .001 and .0001. 

attractor. Again, there is close agreement in values. 

Coarse Solution Fine Solution Ensemble Average 
End Time Avc Var Ave      Var Ave           Var 

320 26.3 83.7 26.3      83.0 26.3          83.7 

TABLE 1.2.  Average distance of numerical Lorenz solutions to the origin com- 
puted with over a long time and using an ensemble average. 

Example 1.10 A characteristic of Lorenz solutions that is linked to chaotic 
behavior is the pattern of orbits around the nonzero fixed points. We compute 
the average number of orbits around a particular fixed point made by a solu- 
tion before it moves to orbit the other fixed point, sec Fig. 1.14. Wc compare 

.-  0.6 
c 
a  0.4 
o 

jl            D   Ensemble Average 

II            ■   Long Time Computation 

§•0.2 
o 
U 1 II li ^ ^ _ 

1      2      3      4     5      6      7      8     9     10 

Number of Orbits 

FIG. 1.14. The quantity of interest is the average number of orbits around a 
nonzero fixed point. On the right, we plot the probability density for the 
orbits computed from a long time solution and an ensemble average of short 
time accurate solutions. 

the probability density of orbits for an ensemble average over many short time. 
accurate solutions to that for a long time solution. 

The conclusion is that solutions of the chaotic Lorenz problem are sensitive 
pointwisc to perturbations and errors, yet there arc quantities of interest that can 
be computed from the solutions that are relatively insensitive to perturbation 
and error. An analysis to obtain accurate estimates of the effects of perturbation 
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and error must be conducted relative to the information that is to be computed 
from solutions. 

1.3    The tools for quantifying stability properties: Functionals, 
duality, and adjoint operators 

In the previous section, we saw that stability plays a critical role in determining 
the effects of perturbation and error. Wc saw that stability is often a complex 
issue with many facets that arc not easily determined. We also saw that classic 
a priori analyses may be too crude to be used to quantify variation and error 
arising in particular information computed from particular solutions of particular 
problems with any reasonable accuracy. 

All of these observations provide motivation to find another approach to de- 
termine the effects of stability. The approach we describe in this chapter is a 
posteriori., which means that the stability of particular information of a particu- 
lar solution is determined after the information is computed. A posteriori and a 
priori analyses are fundamentally different. For example, an a priori error anal- 
ysis of a numerical method describes the general accuracy properties for a wide 
class of solutions, yet generally overestimates the error in any particular solution 
to a significant extent. An a posteriori error analysis provides an estimate of the 
error in particular computed information, but the estimate changes when the so- 
lution changes and consequently it is generally difficult to draw any conclusions 
about convergence of the method. Both a priori and o posteriori analyses play 
key roles in analyzing the effects of uncertainty and error. 

Wc use duality and adjoint operators to quantify stability a posteriori. Wc 
combine these with variational analysis to produce accurate estimates of the 
effects of perturbation and error. These tools have a long history of applica- 
tion in model sensitivity analysis and optimization, dating back to Lagrange. 
Wc present a very brief overview here, see the references (Marchuk et al, 1996; 
Lanczos, 1997; Cacuci, 1997; Marchuk, 1995; Atkinson and Han, 2001: Aubin, 
2000; Cheney, 2000; Folland, 1999; Schcchtcr, 2002) for more details. The appli- 
cation of these tools to a posteriori error estimation has a more recent history, see 
the references in (Eriksson et al.. 1996; Eriksson et al. 1995; Estep et al. 2000; 
Becker and Rannacher, 2001; Giles and Süli, 2002; Bangcrth and Rannacher, 
2003; Paraschivoiu et al., 1997; Barth, 2004). 

1.3.1    Functionals and computing information 

Wc focus on computing a particular piece of information, or a quantity of interest, 
from a solution of a model. We use linear functionals, which arc a special kind 
of linear map, to do this. A continuous linear functional (. is a continuous linear 
map from a vector space X to the reals K. 

Example 1.11 Let v in R" be fixed. The map (.(x) = v • X — (x,v) is a linear 
functional on M". 

Example 1.12 Consider C([a..b]). Both ((f) = tff(x)dx and ((f) = f(y) for 
a < y < b arc linear functionals. 
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Example 1.13 There are important nonlinear functionals, e.g. norms. 

It is useful to think of a linear functional as providing a "one dimensional 
snapshot" of a vector. 

Example 1.14 In Example 1.11. consider v = e*. the itl1 standard basis func- 
tion. Then i(x) — x; where x = (xx, ■ ■ ■ .xn). 

Example 1.15 If öy denotes the delta function at a point y in a region SI. This 
gives a linear functional on sufficiently smooth, real valued functions via 

£(u) = u(y) = / 6y(x)u(x)dx. 
Jn 

Example 1.16 The expected value E(X) of a random variable X is a linear 
functional. 

Example 1.17 The Fourier coefficients of a continuous function / on [0, 2-n], 

r2ir 

-I f{x)e-,]xdx 

Using linear functionals means settling for a set of snapshots rather than 
the entire solution. Presumably, it is easier to compute accurate snapshots than 
solutions that arc accurate everywhere. In many situations, we settle for an 
"incomplete" set of samples. 

Example 1.18 We arc often happy with a small set of moments of a random 
variable. 

Example 1.19 In applications of Fourier series, we typically use a finite sum 
truncation of the infinite scries. We require increasing amounts of information, 
e.g. values, of a function in order to compute increasingly higher order Fourier 
coefficients. 

We define the dual space to be the collection of "reasonable" snapshots. More 
precisely, if X is a normed vector space with norm || ||, the space of continuous 
linear functionals on X is called the dual space of or on or to X, and is denoted 
by X*. The dual space is a vector space. We can define the dual norm for y e X* 
by 

Hvllx- =    sup   \y(x)\ = sup Mgi. 
*ex xex   \\x\\ 

\\x\\X = l *#o 

Example 1.20 When X = R" with the usual dot product (, ) and norm || || = 
|| ||, we saw that every vector v in R" is associated with a linear functional 
£„(•) = {-.v). This functional is continuous since \{x.v)\ < \\v\\ \\x\\ (The "C" in 
the definition is ||u||). A classic result in linear algebra is that all linear functionals 
on Rrl have this form, i.e., we can make the identification (Rn)* = M". 
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Example 1.21 Recall Holder's inequality for / e L"(ü) and g e L"{Q) with 

—I— = 1 for 1 < p, q < oo is 
P     Q 

ll/slk>(n) < ||/IUp(n)llslU"(n)- 

This implies that each g in Lq(Q) is associated with a bounded linear functional 

on Lp(?l) when - + - = 1 and 1 < p. q < oo by 
p     q 

l(f)= [ g{x)f{x)dx. 

An important, and difficult, result is that we can "identify" (Lp)* with Lq when 
1 < p, q < oo. The cases p = 1, q = oo and p = oo. q = 1 arc trickier. The case 
i2 is special in that we can identify (L2)* with L2. 

There is a useful notation for the value of a functional. If x is in X and y is 
in X*, we define the  bracket of a; and y as 

y{x) = {x.y). 

It is not surprising that norms on X and its dual X* arc closely related. An 
important inequality is 

Theorem 1.22  The  generalized Cauchy inequality is 

\<*,v)\Z\\x\\x\\v\\x;    xeX..yeX'. 

Combining this with the Hahn-Banach theorem yields a "weak" representation 
of the norm on X, 

Theorem 1.23 If X is a Banach space, then 

||x||x = sup Ä =    sup    \y(x)\ 
yex-    \\y\\x-        y£X- 
y#o ||y||.v=i 

for all x in X. 

This says that we can determine the size of a vector in X by examining a sufficient 
number of "snapshots". 

Example 1.24 In Ex. 1.20. wc saw that K" with the standard Euclidean norm 
can be identified with its dual space. Likewise. L2 can be identified with its dual 
space. Both of these spaces are Hilbert spaces. 

Remarkably, Ex. 1.20 generalizes to infinite dimensions. If X is a Hilbert 
space with inner product (x,y). then each y e X determines a linear functional 
iy(x) = (x.y) = (x,y) for x in X. This functional is continuous by Cauchy's 
inequality, which says that |(x,j/)| < ||x|| \\y\\. 

It turns out that is the only kind of continuous linear functional on a Hilbert 
space. 
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Theorem 1.25 Riesz Representation for Hilbert Spaces For every bounded 
linear functional £ on a Hilbert space X, there is a  unique element y in X such 
that 

\£(x)\ 
e(x) = (x.y) for all xeX, and \\y\\x- = sup i7f1f. 

xex \m\ 
x^to 

This means that the dual space to a Hilbert space X can be identified with X. 
Abusing notation, it is common to replace the bracket notation and the gener- 
alized Cauchy inequality by the inner product and the "real" Cauchy inequality 
without comment. 

1.3.2    The adjoint operator 

To motivate the definition of the adjoint operator, let X and Y be two Banach 
spaces. L : X —► Y be a continuous linear map, and consider the problem of 
computing a functional value 

e(L(x)) 

for some input x £ X. Some important questions arc 

• Given that wc only want a functional value of the solution, can we find a 
way to compute the functional value efficiently? 

• What is the error in the functional value if approximations are involved? 
• Given a functional value, what can wc say about x? 
• Given a collection of functional values, what can wc say about £? 

We can address these questions using the adjoint operator. Suppose L is a 
continuous linear transformation. For each y* £ Y*. 

y* o L{x) = y*(L(x)) =< Lx.y" > 

assigns a number to each x £ X, hence defines a functional P(x). The functional 
£(x) is clearly linear. It is also continuous since 

\e(x)\ = \y*(L(x))\ < \\y*\\Y.\\L(x)\\Y < ||if ||H|L|| IMIx = C\\x\\x, 

where C — ||y*||y ||£||- By the definition of the dual space, there is an x* 6 X* 
such that y*(L(x)) — x*(x) for all x € X. x* is unique. 

We have defined (. = x* implicitly. Given x, we first apply the operator L, 
then compute a functional of the result. This may seem a little strange. Wc put 
it into context of a classic example. 

Example 1.26 Consider the elliptic problem 

~Au = f-   y€il- (1.18) 
u = 0, ye dQ, 

where we wish to evaluate u(yo) for some i/o S ^- ln this example, the data / 
plays the role of x above in the definition of t. Note that we do not evaluate 
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f(yo). Instead, wc have to solve (1.18). where u = L(f) is determined by the 
solution operator L of the Dirichlct problem. We then apply the functional 

u(y0) = {u,6yo) = (L(f),6yo). 

Wc now apply this implicit definition to each y* € Y*. For each y*. assign a 
unique x* 6 X* and in this way define a linear transformation L* : Y* —» X". 
called the  adjoint or dual operator to L. 

Example 1.27 Continuing Ex. 1.26, wc pose the adjoint problem 

-A<f> = 5yu,    y€Q., 

0 = 0, yedQ, 

and denote the solution 4> = L*(5Ua). We have 

(u,Syo) = (L(f),6yo) = (f,L*(6yo)) = (/,0). 

This is just the method of Greens function. 

Note that wc have defined the adjoint transformation via computing snapshots 
using elements in the dual space. Wc can write these relations as 

/(I(!t))-IY(«) 

or using the bracket notation, 

(L(x),?/*) = (*,L*(y*))    X S X, y* € Y*. (1.19) 

Equation (1.19) is called the  bilinear identity. 

Example 1.28 Let X = Rm and Y = K'\ where wc take the standard inner 
product and norm. By the Riesz Representation theorem, the bilinear identity 
for L eC(R"l.Rn) reads 

(Lx,y) = (x,L*y),    x 6 Km, y € Mn. 

Wc know that L is represented by a unique nx m matrix A so that if y = L(x). 

fau ■ ■ ■ oim\ /^i\ Ix\ 

\an\ ■ ■ ■ an 

then 
Tn 

Vi - ^2aijxj-,     1 <i <n. 
3 = 1 

For a linear functional y* = {y\, ■ ■ ■ ,y,*)T £ Y*, we have 
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L'y"(x)=y*(L(x)) =    {y*, ■•■ ,j/,*), : = ^(J^w'oy)^ 

V \E?=1anjxjl)      i-' «■ 

Therefore. L*(y*) is given by the inner product with y — (y1; • - ■ ;ym)T where 

it 

1=1 

This implies the matrix A* of L* is 

(aU   "'   aln\ /aH    ffl21   ••'    a»l 

aml ■ ■ ■   amn/ \alm a2m ■■•   a„ 

Wc can write the bilinear identity as 

yT Ax = xT ATy 

using the fact that (x, y) = (y.x). 

We give more examples below. 
We conclude with some basic facts: 

Theorem 1.29 Let X and Y be normed vector spaces and L : X —> Y. Then, L" 
is a continuous linear operator and \\L*\\ = ||L||. Also, 0* = 0. //A/ : X —* Y is 
another continuous linear operator, then (L + M)* = L* +M* and (aL)* — aL" 
for all scalars a. 

If Z is another normed vector space and N :Y —> Z, then NL : X —» Z is a 
continuous linear operator and (NL)* = L*N*. 

1.3.3    Four good reasons to use adjoints 

We can provide some immediate motivations to introduce the concepts of duality 
adjoint operators, which indeed turn out to be fundamentally important for the 
analysis of operators. 

Reason # 1 X* often has good properties that X may lack. 

Theorem 1.30 If X is a normed vector space over R, then X* is a Banach 
space, i.e. Cauchy sequences in X converge to a limit in X, whether or not 
X is a Banach space. 

Reason # 2 There is a close connection between the stability properties of an 
operator and its adjoint. 

Theorem 1.31   The singular values of a matrix L are the eigenvalues of 
the square, symmetric transformations L*L OT'LL*. 

This connects the condition number of a matrix L to L*. 
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Reason #3 If L is a linear transformation between normed vector spaces, the 
solvability of L(y) = b is closely related to the solvability of L*((f>) = ip. 

Theorem 1.32 Let X and. Y be normed linear spaces and L : X —> Y 
a continuous linear transformation. A necessary condition that L(x) = y 
has a solution is thai y*(y) = 0 for all continuous functionals y' such that 
L*y* = 0 . This is a sufficient condition if the range of L is closed in Y. 

Example 1.33 Suppose that L : K"1 —> R" is associated with the n x m 
matrix A, i.e., L(x) = Ax. The necessary and sufficient condition for the 
solvability of Ax = 6 is that b is orthogonal to all linearly independent 
solutions of ATy = 0. 

In general, all kinds of information about the solvability and deficiency of 
the linear system Ax = b can be determined by considering A*A. In the 
over-determined and under-determined cases, it yields a "natural"' defini- 
tion of a solution or gives conditions for a solution to exist, sec (Lanczos, 
1997). 

Reason # 4 Suppose we wish to compute a functional (-,1p) of the solution y 
of an inverse problem for a linear operator A and data b. 

Ay = b. 

We define the adjoint (inverse) problem 

A*c}> = ip. 

Then we obtain a representation of the solution, 

{y,rl>) = (3/,A'4>) = (Ay,4>) = fat). 

Such an error representation is very useful in practice. For example, we 
can compute the effect of many perturbations in the data very efficiently 
by computing one adjoint solution and taking inner products with the 
perturbations. 
This formal argument is essentially the entire foundation for error estima- 
tion and uncertainty quantification described in this chapter. The reader 
may notice that it generalizes the method of Greens functions. We discuss 
this further below. 

1.3.4    Adjoint operators for linear differential equations 

VVc briefly discuss the computation of adjoints to differential equations. On a 
simple level, given a differential operator L on a domain f2, we seek to evaluate 
the bilinear identity, 

(Lu,v*)-{u,Lmv')-0,    allueX, v* eY*. (1.20) 

But. there are a lot of details needed to make this a computational process, e.g. 
what does it mean to compute ( , )! 
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In the common situation in which wc consider functions in a Hilbert space 
like L2(Q), we attempt to replace { . ) by the inner project ( , ), 

(Lu. v*) — (u. L*v*) = (Lu, v) — (u, L*v). 

Even using the familiar L2(Q) inner product, however, computing an adjoint 
can be tricky. On one hand, the process for computing an adjoint is simple to 
state: multiply the differential equation by a test function, integrate over the 
entire space-time domain (which amounts to taking the L2 inner product of the 
differential equation and the test function), and keep integrating by parts until 
all derivatives fall on the test function. The differential operator that ends up 
being applied to the test function "is" the adjoint operator. On the other hand, 
details lead to all kinds of technical difficulties. A general abstract theory is 
difficult to present, sec (Lions and Magencs, 1972). 

First of all, the definition of the adjoint of a given forward operator depends 
heavily on the spaces involved with the maps. On the face, the process described 
above only works for functions sufficiently smooth that all the integration by 
parts arc defined. Technically, we compute the adjoint for smooth functions and 
then pass to a limit (a "density" argument) to the full spaces on which the 
operators arc defined. 

Second of all, integration by parts leaves behind integrals over boundaries and 
these have to be accounted for when defining the adjoint operator. The reason 
is simply that a differential operator is generally under-determined and wc add 
boundary and initial conditions in order to get an invertiblc operator. Clearly, 
the boundary and initial conditions therefore must affect the definition of the 
adjoint operator. 

To simplify life, wc compute the adjoint in two stages. We first assume that 
the functions involved are smooth and have compact support inside fi, i.e. the 
functions and all their derivatives vanish at the boundary. In this way, wc carry 
out the integration by parts while ignoring boundary terms. Given a differential 
operator L on a domain Q. the formal adjoint L* is the differential operator 
that satisfies 

(Lu. v) — (it, L*v) 

for all sufficiently smooth u and v with compact support in Q.. 

Example 1.34 For 

Lu{x) = -l{a{x)iu{x]) + i{b{x)u{x}) 

on [0,1]. Integration by parts neglecting boundary terms gives the formal adjoint 

d 
dx (aM^(i)j -b(x)fa(v(x^- 
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Example 1.35 A general linear second order differential operator L in fi C R" 
can be written 

n      n «2 n .-. 

i=\ j = l J 1=1 

where {a^}. {6;}, and c are functions of X1.22, * •* ,£„. Then. 

It can be verified directly that 

dpi ^(«)-u^w = E-aijI 

where 

1=1 \ 

xi        du       d(aijv) ,     , 

The expression on the right is a divergence expression and the divergence theorem 
yields 

/ (vL(u) — uL*(v)) dx =   I    p-nds = 0, 
Jn Jen 

where p = (pi,- ■ ■ ■, pa) and n is the outward normal in <9Q. 

Example 1.36 Let L be a differential operator of order 2/J of the form 

Lu=    J2    (-l)]nlDa(aaß(x)D0u)., 

N,|/J|<p 

then 
L*v=    E   i-l)MDa(aßa{x)Dßv), 

\<*l\ß\<P 
and L is elliptic if and only if L* is elliptic. Some special cases. 

grad* = —div 

div* = —grad 

curl* = curl 

and if 
Lu= Y^ a«{x)Dau 

\<*\<P 

then 

L'v= £ (-l^D«^^^)). 
l"l<p 
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Ignoring initial as well as boundary conditions, evolution problems are treated 
similarly in the sense that we integrate by parts over space and time. There is an 
important difference however because time has a direction and the time variable 
for the adjoint problem runs "backwards." 

Example 1.37 If we have a parabolic problem 

Lu = ut-V ■ (oVu) + bu,    x e 0, 0 < t < T, 

then 
L*v = -vt - V • (aVv) + bu,    x£Ü,T>t>Q. 

The adjoint problem is also parabolic, and not an "ill-posed" or "backwards" 
parabolic problem as suggested by the "-" in front of the time derivative term. 
This is easily seen by making the substitution t -+ s = T — t, so that 

L*v = ?;., - V • (a(T - s)Vv) + b{T - s)v,    x e Ü, 0 < s < T. 

We find it convenient to use this change of variables when solving the adjoint 
problem in practice. 

In the second stage of computing the adjoint, we remove the assumption that 
the functions involved in evaluating the bilinear identity have compact support. 
The integrations by parts that produces the formal adjoint yield additional terms 
involving integrals of the functions and their derivatives over the boundary of 
Q. We then choose boundary conditions for the adjoint problem depending on 
what we want to happen with the boundary terms from evaluating the bilinear 
identity. 

For example, the standard approach is to pose the minimal boundary condi- 
tions on the adjoint problem necessary to make the boundary terms that appear 
when evaluating the bilinear identity vanish. These arc called the adjoint bound- 
ary conditions. This definition is rather vague, but it can be made completely 
precise, see (Lions and Magenes, 1972). 

Note that for the purpose of defining the adjoint boundary conditions, the 
form of the boundary conditions imposed on the original operator L are impor- 
tant, but the values given for these conditions are not. If the boundary conditions 
for L are not homogeneous, we make them so for the purpose of determining the 
adjoint. It follows that some of the boundary terms that appear when evaluating 
the bilinear identity vanish because of the homogeneous boundary conditions 
imposed on L and the adjoint boundary conditions insure that the rest vanish. 

Example 1.38 Consider Newton's equation of motion s"(t) = f(t). normalized 
with mass 1. If we assume s(0) = s'(0) = 0, and 0 < t < 1, then we have 

s v — sv   = — ( 
at 

and 
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I 
1 

(s"v - sv") dt = {vs' - sv')\ . (1.21) 

Now the boundary conditions imply the contributions at t = 0 vanish, while at 
t — 1 we have 

v(\)s'(l)-v'(l)s(\). 

To insure this vanishes, wc must have v(l) = v'(l) = 0. (We cannot specify s(l) 
or s'(l) of course.) These arc the adjoint boundary conditions. 

Example 1.39 Since 

/„ (uAv — vAu) dx =  I     ( u— v--- ) ds. 
'an V   dn       dn,' 

the Dirichlet and Neumann boundary value problems for the Laplacian are their 
own adjoints. 

Example 1.40 Let Q C K2 be bounded with a smooth boundary and let s = 
arclength along the boundary. Consider 

Since 

the adjoint problem is 

-Aw = /, 16(1, 
fi + fiä = 0. 
On         ds xedQ. 

Jon \   \dn 
dv\         /du     du 
ds J        \ dn     ds 

—Av = g, x G n, 
On        du        r\ 
On        ds  ~ U: x&dü. 

ds. 

1.4    A posteriori error analysis using adjoints 

Wc now apply functionals, adjoint operators, and variational analysis to the 
problem of estimating the error of a finite element solution of a partial differential 
equation. The analysis rests on the observation in Reason # 4 above and we begin 
by extending that argument to differential equations. Given a domain fi, which 
could be a time interval, a space domain, or a space-time domain, we consider a 
problem of the form 

fLu = f, ouQ (122) 

I bound, cond. and init. val.,    on du. 

where L is a linear differential operator and wc specify the correct boundary 
and/or initial conditions so that (1.22) has a unique solution. Wc assume that 
the goal of solving (1.22) is to compute a quantity of interest given as a linear 
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functional £(u) = (u.ip) for some ip. The generalized Greens function for (1.22) 
corresponding to ip satisfies 

lL't~*' °nQ- (1.23) 
I adjoint bound, cond. and init. val.;    on dQ. 

where L* is the formal adjoint of L. There arc minor variations of this definition if 
we pose the data ip on the boundary of Q rather than the interior (i.e.. as bound- 
ary or initial data), sec (VVildey et al., 2008). We obtain the basic representation 
formula. 

(u,i>) = (u.,L*<t>) = (Lu,4>) = (f,4>). 

We use this argument to derive an a posteriori error estimate. 

Example 1.41 We begin by returning to Ex. 1.6., and estimating the error e = 
X — x in the numerical solution X of a linear system of equations 

Ax = b. 

We derive an estimate of the error in a quantity of interest given by a linear 
functional (e. ip), where ip is an given vector. Wc introduce the generalized Greens 
vector solving the adjoint problem 

AT4> = ip. 

Arguing as above, 

(e;iP) = (e.,AT4>) = (Ae,<P) = (R,cß).. 

where R = AX — b. Wc obtain a representation of the error as an inner product 
of the computable residual and the solution of the adjoint problem. In practice, 
wc approximate 4> and obtain a computable estimate. 

Wc can also derive a bound 

l(^)l<IHII|Ä||. (1-24) 

Returning to the specific example in Ex. 1.6. we find 

estimate of the error in the quantity of interest ~ 1.0 x 10-15, 

o posteriori error bound for the quantity of interest « 5.4 x 10~14. 

traditional error bound for the error =s 3.5 x 10-5. 

The a posteriori estimate is very accurate. The a posteriori bound overestimates 
the error since any cancellation in the inner product (R,(p) is lost, but it is still 
much better than the traditional condition number bound. 
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The adjoint quantity ||0|| is called the   stability factor. It is related to the 
condition number of A. since 

<cond0(i4)@, 

where 
cond4A) = |H|||/l|| = ||A-TV>||||A|| 

is a kind of "weak" condition number of A with respect to the targeted quantity 
of interest. If we take the supremum of cond $(A) over all possible ip with norm 
1. we obtain the standard condition number of A. Hence, the stability factor 
obtained from the generalized Greens function is a measure of the sensitivity of 
particular information computed from a numerical solution of the problem to 
computational errors. 

1.4.1     Discretization of elliptic problems 

We first consider a general second order linear elliptic boundary value problem 
for a scalar unknown. 

U — 0,        X £ OYl. 

where 
L{D, x)u = - V • a{x)S7u + b(x) ■ Vu + c{x)u{x). (1.26) 

with u : K" —> R, a is a n x n matrix function of x, & is a n-vector function of 
x, and c is a function of x. We assume that Q C R". n = 2. 3, is a smooth or 
polygonal domain; a = (a^), where ahj are continuous in Q for 1 < i. j < n and 
there is a üQ > 0 such that vTav > üQ for all uER"\ {0} and x 6 Q; b = (6,-) 
where 6,- is continuous in SI; and finally c and / arc continuous in Q. 

We discretizc (1.25) by applying a finite clement method to the associated 
variational formulation: 

Find u 6 H^(Sl) such that 

A{u.v) = {aVu.yv) + {b-Vu,v) + {cu,v) = (f.v) for all ve H^(Q),    (1.27) 

where HQ(Q) is the subset of functions in Hl(Q) that are zero on dSi and H1(Q) 
consists of functions that together with their first derivatives arc square inte- 
grate on SI. 

To construct a finite element discretization, we form a piccewisc polygonal 
approximation of dSl whose nodes lie on dQ and which is contained inside fi. 
This forms the boundary of a convex polygonal domain Q^. We let Th denote 
a simplex triangulation of Slh that is locally quasi-uniform. We let KK denote 
the length of the longest edge of K € Th and define the piecewise constant mesh 
function h by h(x) = hx for x € K. We also use h to denote max^- IIK- We choose 
a finite element solution from the space V'h of functions that are continuous on 
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Q. piecewisc linear on Qh with respect to %., zero on the boundary 9Q/,, and 
finally extended to be zero in the region Q \ Qh- With this construction, we 
have Vh C HQ(Q). and for smooth functions, the error of interpolation into Vh 
is 0(/i2) in || ||. but not better. The finite element method is: 

Compute U € Vh such that A{U, v) = (/, v) for all veVh. (1.28) 

In these notes, we take for granted the usual a priori convergence results 
for finite element methods and concentrate on the a posteriori analysis used to 
produce computational error estimates. In particular, by standard results, we 
know that U exists and converges to u as h —» 0. 

1.4.2    A posteriori analysis for elliptic problems 

The goal of the a posteriori error analysis is to estimate the error in a quantity 
of interest (u, ip) computed from the finite clement solution U. To do this, we 
use a generalized Greens function 0 solving the adjoint problem corresponding 
to ip. 

Find 0€ #d(fi) suchthat 

A*(v,<p) = (Vv,a.V<t>) - (v,div(b<t>)) + (u,c0) = {v,ij)) for all v e H^Q). 
(1.29) 

This is just the weak form of the adjoint problem L*(D, x)<j> = tji. Extending the 
analysis above, 

(e, 0) = (Vc, o,V0) - (c, div (60)) + (e, c0) 

= (aVe, V0) + (b ■ Ve, 4>) + (ce, <P) 

= (aVu, V0) + {b ■ Vu, 0) + [cv, 0) - (aVU, V0) - (6 • VU, 0) - (c[/, 0) 

= (/, 0) - (aVU, V0) - (6 • VC/, 0) - (ct/, 0). 

Letting iTk<t> denote an approximation of 0 in V^, using Galcrkin orthogonality 
(1.28). we conclude 

Theorem 1.42 The error in the quantity of interest computed from the finite 
element solution (1.28) satisfies the   error representation, 

(e,V>) = (/,0-^0)-(aVl/1V(0-7rh0))-(6-Vt/!0-7rh0)-(cf/,0-^0)! (1.30) 

where the generalized Greens function <p satisfies the adjoint problem (1.29) cor- 
responding to data ip. 

The most accurate a posteriori error estimates are obtained by using (1.30) 
directly as opposed to making further estimates. To use the estimate, we ap- 
proximate 0 using a finite element method. Since 0 — 7^0 ~ 5Zui=2 Da4> where 
0 is smooth, we use a higher order finite clement than that used to solve the 
original boundary value problem. For example, good results are obtained using 
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the space Vfi of continuous, pieccwisc quadratic functions with respect to 7/,. 
The approximate generalized Greens function is 

Compute $ e V* such that 

A*(v,$) = (WaV$) - (Miv(b*)) + (f,c$) = (u,</>) for all v 6 Kh
2.    (1.31) 

The  approximate error representation is 

(e. i>) «(/,$- JT/,$) - (oVt/. V($ - 77,,$)) - (6 ■ VU. $ - 7Tfc$) - (CU. $ - 7Th$). 
(1.32) 

Example 1.43 In (Estcp et al., 2002), wc estimate the error in the average 
value of the solution of 

-Au = 200sin(107rz)sin(107n/)!    (x,y) e Q = [0,1] x [0.1]. 

u = 0, • {x,y)edQ 

The solution is u = sin(107rx) sin(107ry), sec Fig. 1.15. 
In Fig. 1.15, wc show a plot of error/estimate ratios for various degrees of 

accuracy. Ideally, we would get a ratio of 1. In practice, the accuracy of the 
estimate is affected by the numerical error in the adjoint and the errors arising 
from quadrature applied to the integrals in the representation (1.32). At the 

0.0 0.1 1.0 10.0        100.0 

percent error 

FIG. 1.15. The solution u = sin(lOTrz) sin(107ry) and a plot of error/estimate 
ratios for various mesh sizes. 

inaccurate end, wc arc using meshes with 5 x 5 to 10 x 10 elements. Wc emphasize 
that the computed numerical solution bears almost no resemblance to the true 
solution at those discretization levels, yet the estimate is reasonably accurate. 

Note that in practice, the error to estimate ratio tends to vary quite a bit, 
even in the best of circumstances. The accuracy of the estimate is affected by 
numerical considerations including the accuracy of the computed adjoint solution 
and the use of quadrature to evaluate the integrals yielding the error estimate. 
In nonlinear problems, it turns out that there is a linearization error that may 
be significant. 
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1.4.3    Adjoint analysis for nonlinear problems 

So far in the discussion of a posteriori analysis, we have treated linear problems. 
This is no coincidence because the notion of an adjoint to an operator explicitly 
depends on the linearity of the operator, which means in particular that the op- 
erator is independent of the input. This in turn implies that the bilinear identity 
serves to determine a unique adjoint operator. On reflection, this fact is apparent 
in the computations in Ex. 1.28. 

Above, we derived an a posteriori error estimate for a linear problem by modi- 
fying the representation formula involving the generalized Greens vector/function. 
Subtracting the representation formulas for a solution and an approximation 
leads to a representation of the error. Now we apply the adjoint analysis tech- 
nique directly to the problem of deriving an error estimate for an approximate 
solution of a nonlinear problem. 

We assume that F : X —♦ Y is a nonlinear map between Banach spaces 
X.Y with a convex domain T>(F). Convexity is a typical assumption, with one 
important consequence being that mean value theorems hold. We let u £ T>(F) 
solve the nonlinear problem 

F[u) = b, (1.33) 

for some data b £ Y in the range of F. Wc let U « u be an approximate solution, 
where U 6 ~D(F). The nonlinear residual of U is 

R{U) = F(U) - b. 

With e = U — u, we have 

F{U)-F{u) = R{U). (1.34) 

Now we write U = u + e and define the operator 

£{e) = £{e; u) = F(u + e) - F(u). 

where £(0) = 0. The fundamental observation is that if F is smooth, e.g. Frechct 
diffcrcntiable, then £(e) « F'(u)e behaves linearly in e to first order when e is 
small. Hence, it makes sense to try to define an adjoint to £(e). The domain of 
£ is 

V{£) = {v<£X\u + veV{F)}. 

To be technically precise, we assume that V(£) is a dense vector subspace of X 
and independent of e. 

We now define the adjoint operator £* through 

(£(v). w) = {v,£(v)*w),    for all sufficiently small v G V{£) and all w £ V{£*). 
(1.35) 

(Note the notation is somewhat confusing, since £(v) is an operator applied to 
v while £(v)* is an operator.) This gives the basic representation formula that 
is useful for error estimation. In the Sobolcv space setting, wc realize this as 

(£(v),Ui) = (v,£(v)*w),     for all sufficiently small v 6 V(£) and all w e £>(£*). 
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Example 1.44 Consider the map F : R2 —> M2 given by 

F(U) = M+^A. 
ui e 

It is easy to compute 

m = F(U+E) - F(«) = (^ eU2 (e£2 _ 1}
2
+ ei eU2+£2 j 

We can write 
2iti + vi 3 

W      ,   „^-r^   uj e" I - ," * I I   \v2 

Evaluating (1.35) yields 

«i 

£(«)• = 3       «i^(^)J' 

In the limit of small v, we recognize that £{v)" « (F'(u))*, where F'(w) is the 
Jacobian of F at u. 

2741        3 
F'(u) 

This example suggests one systematic way to define an adjoint operator for 
error analysis. When F is Frcchct diffcrcntiablc. we use the Integral Mean Value 
Theorem to write 

£{e) = F(u+e)-F{u) = ( f  F'{u + se) ds\ e = ( j  F'{su + (1 - s)U) ds) e. 

(1.36) 
If we define the "average" Jacobian 

71 = [  F'{u + se)ds=   f 
Jo Jo 

+ se)ds=       F'(su + (l-s)U)ds, 
Jo 

then we can use £(e)* = (F')* as an adjoint in the analysis. 
In much of the literature on a posterioriierror analysis for nonlinear problems, 

the standard way to define an adjoint operator is to use the Integral Mean Value 
Theorem approach. Note that in practice, u is typically unknown so F' is not 
computable. Typically, wc simply linearize around U, i.e. replace F' —► F'(U). 
This may be an issue if u and U are sufficiently far apart that they are associated 
with significantly different adjoint operators. 



A posteriori error analysis using adjoints 35 

Example 1.45 Wc continue Ex. 1.44 by examining the invertibility of £[v)*. 
We can use column operations to obtain the triangular matrix 

/ 0 1 
£{v)* —» , . /l_oxp(_U2)\ fl-cxp(-u-,)\ \Z-(2ui+v1)ui[^ S~^J u'1 S~   ) 

Thus, the invertibility of £{v)* is determined by the distance of 3 — (2u\ + 

^i(1-Ct~"2))t00- 
Expanding this quadratic function in «i, we find that the roots arc equal to 

± \/3/2 when vi = v2 — 0 and nearby for small vi, v2 . If wc bound Ui away from 
these critical values. 

2     3 

"'-2 

for some constant c. wc find that 

1 - exp(-^2 

> c2 > 0, 

3 — (2ui + v\)u\ 
v2 

>2c2-\u1\0(\vl\)-\ul\
20(\v2\ 

We conclude that there is a constant c such that £{v)* is uniformly invcrtiblc 
for 

Hence, linearization around two points with nearby values of «i produces adjoint 
operators with nearly the same stability (invertibility) properties. 

On the other hand, if |«j| a; \/3/2 then there arc critical values of V\ and v2 

which make the operator £(v)* non-invcrtible. In this case, linearization around 
two points that are near ut w ±\/3/2 may yield adjoint operators with substan- 
tially different stability properties. 

Wc also note that (1.35) docs not define a unique adjoint operator in general. 

Example 1.46 Suppose that £{e) can be written as £(e) = A(e)e, where A(e) 
is a linear operator with T>(£) C T>{A). For a fixed e € T>{£), wc can define the 
adjoint of A satisfying (A(e)iu, v) = (w, A*(e)v) for all (/; 6 'D(A). v G T>(A*) as 
usual. Substituting w = e shows this defines an adjoint of £ as well. If there are 
several such linear operators A. then there are generally several different possible 
adjoints. 

Following (Marchuk et al., 1996), for (t.x) e Q = (0,1) x (0,1), wc let 
X — X* = Y = Y* = L2 equal to the space of periodic functions in t and x with 
period 1. Consider the Burgers equation 

ut + uux + au = f, (1-37) 

where a > 0 is constant and / is a periodic function, and wc apply periodic 
boundary conditions on Q. Straightforward computation yields 
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£(e) = -Tr + (u + e)— + (ux + a)e. 

We have £(e) — Ai(e)e, where 

, , s       dv     ,        .dv     . . 
Ai(e)v = — + (u + e)— + (ux + a)v 

and the adjoint is 

.... dw     d((u + e)w)      . . 

We also have €(e) = A2{e)e. where 

and 

.  . .        dv       dv     . . 
A2(e)v = -QT + 

U
Q— + \ux + ex + o)v 

....           dw     d(uw)      . , 
A2(e) w = -— — + (ux +ex + a)w. 

Returning to the original problem, once the adjoint is defined, we can derive 
a representation formula for the error. In the Sobolev space setting, we note that 

(R(U),w) = (F(U) - F{u),w) = {£{e).w) = (e,£(e)*w). 

To estimate the error in a quantity of interest (e. -0). we let the generalized Greens 
function <fi solve 

£(e)*0 = V': 

and we obtain 
(e,1>) = (R(U),4>). 

1.4.4    Discretization of evolution problems 

We consider a reaction-diffusion equation for the solution u on an interval [0, T], 

u- V-(e(i.t)VM) =f(u,x,t).    {x.t) eQx (0,T], 

u(x,t) = 0, (x,t)€dttx (0,T\, 

u(x,0) = uo(x), x 6 Q, 

(1.38) 

where 0 is a convex polygonal domain in Rd with boundary 3S1, ii denotes the 
partial derivative of u with respect to time, and there is a constant e > 0 such 
that 

e(x,t)>e,    iEfi,i>0. 

We also assume that e and / have smooth second derivatives and for simplicity, 
we write f(u, x, t) = f{u). Everything in this paper extends directly to problems 
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with different boundary conditions, convection, nonlinear diffusion coefficients, 
and systems of equations, see (Estep et al, 2000). 

We describe two finite clement space-time discretizations of (1.38) called the 
continuous and discontinuous Galcrkin methods, sec (Estep. 1995; Estep and 
French. 1994; Estep et al., 2000; Estep and Stuart. 2002). We can represent many 
standard finite clement in space - finite difference scheme in time methods as one 
of these two methods with an appropriate choice of quadrature for evaluating 
the integrals defining the finite element approximation. We partition [0, T] as 
0 = to < ti < £2 < • • • < tn < ■ ■ ■ < i^r = T. denoting each time interval by 
/„ = (tn_i, tn\ and time step by kn = tn—tn-i- We use k to denote the piccewise 
constant function that is kn on In. We discrctizc Q using a set of elements T 
as described in Sec. 1.4.1. We describe the notation when the space mesh is the 
same for all time steps. In general, we can employ different meshes for each time 
step. 

The approximations arc polynomials in time and piccewise polynomials in 
space on each space-time "slab" S„ = Q x In. In space, we let V C HQ(Q) 

denote the space of piccewise linear continuous functions defined on T, where 
each function is zero on dfi. Then on each slab, we define 

Wl = < w{x,t) : w{x,t) = ^2tjvj{x)., Vj e V, (x,t) e Sn \ . 

Finally, we let W denote the space of functions defined on the space-time domain 
Q x [0, T] such that v\Sn e W% for n > 1. Note that functions in W" may be 
discontinuous across the discrete time levels and we denote the jump across tn 

by H» = wt ~ wä where w± = lims_(n± w(s). 
We use a projection operator into V, Pv 6 V, e.g. the L2 projection satisfying 

(Pv, w) = (v, w) for all w € V, where (•, •) denotes the L,2{£i) inner product. We 
use the || || for the L2 norm. We also use a projection operator into the piccewise 
polynomial functions in time, denoted by 7rrl : L2(In) —» V(In). where T"'{In) is 
the space of polynomials of degree q or less defined on /„. The global projection 
operator 7r is defined by setting TX = 7r„ on Sn. 

The continuous Galcrkin cG(q) approximation U £ W satisfies U0~~ = Pn"o 
and 

(/"  {(U,v) + (eVUyv))dt= f" (f(U),v] dt 

for all ve Wr1-.     l<n<N, 

(1.39) 
Note that U is continuous across time nodes. 

The   discontinuous Galerkin dG(q) approximation U € W satisfies £/0~~ = 
PUQ and 
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/"  ((#,«) + (eVU,Vv))dt +([£/]„-i,u+) = /" (f(U)tv)dt 
Jt„_] -'tn-l 

for all t) e W«.     1 < n < JV.    (1.40) 

Note that the true solution satisfies both (1.39) and (1.40). 

Example 1.47 To illustrate, we discrctizc the scalar problem 

'ti-Au = /(u),    (i:f)6fixl+
! 

u(a:,£) = 0, (i;«)£c)nxR+
! (1.41) 

u[x, 0) = uo(a;),   a; € fi, 

using the dG(0) method. Since U is constant in time on each time interval, we let 
U~ denote the M vector of nodal values with respect to the nodal basis {77;} flj 
for V. We let B : (B),. = (J/J.T/J) for 1 < i,j < M denote the mass matrix and 

A : (A).. = (VT;,-, Vr/j) denote the  stiffness matrix. Then [/n satisfies 

(B + fc„X) f7- - F(U- )kn = BÜ-_V    1 < n < N, 

where (F([/,7)); = (/([/"),r,,). 

As mentioned, with an appropriate use of quadrature to evaluate the integrals 
in the variational formulation, these Galerkin methods yield standard difference 
schemes. We write these standard numerical methods as space-time finite element 
methods in order to make use of adjoints and variational analysis. 

Example 1.48 In the example above, if the lumped mass quadrature is used to 
evaluate the coefficients of B. then the resulting set of equations for the dG(0) 
approximation is the same as the equations for the nodal values of the backward 
Euler - second order centered difference scheme for (1.41). 

The dG(0) method is related to the backward Euler method, the cG(l) method 
is related to the Crank-Nicolson scheme, and the dG(l) method is related to the 
third order sub-diagonal Pade difference scheme, sec (Jamct, 1978; Dclfour and 
Dubeau. 1986; Delfour et al., 1981; Thomcc, 1980; Eriksson et al., 1985; Estcp 
and Larsson, 1993; Estep. 1995; Estcp and French, 1994; Estep and Stuart, 2002). 

Under general assumptions, the cG(q) and dG(q) have order of accuracy q+l 
in time and 2 in space at any point. In addition, they enjoy a supcrconvergence 
property in time at time nodes. The dG(q) method has order of accuracy 2q+ 1 
in time and the cG(q) method has order 2q in time at time nodes for sufficiently 
smooth solutions. 

1.4.5    Analysis for discretizations of evolution problems 

We begin the a posteriori analysis by defining a suitable adjoint problem for 
error analysis. The adjoint problem is a linear parabolic problem with coeffi- 
cients obtained by linearization around an average of the true and approximate 
solutions. 
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f = f(u:U) = f  ?f(us + U{\ - s)) ds. (1.42) 
JO     OIL 

The regularity of u and U typically imply that / is piecewisc continuous with 
respect to t and a continuous, H1 function in space. 

Written out pointwisc for convenience, the adjoint problem to (1.38) for the 
generalized Greens function associated to the data 0, which determines the quan- 
tity of interest, 

fin 
Jo 

,ip)dt., ,(1.43) 

4> - V • (eV0) - f4> = V:    [x,t)eftx (T,0], 
tp(x,t) = 0, {x,t)edQ x (r,0], (1.44) 

{X,T) = O, i en, 

Using this definition, for the dG method we have 

i-T rT 

f  {e,ip)dt= f  (e,-^-V-(eV0)-/0)A 
Jo Jo 

N   r 
= J2 /   (e,-0-V-(eV0)-/0)dt. 

We integrate by parts in time for 

J   (e,-<P)dt = -(e;i,4>n)-r{e+_1,<pn_1) + J   {e,4>)dt. 

Likewise, 

/ (e,-V-(eV0))dt =  I (eVe,V0)dt. 

Finally, 

j (eJi>)dt = J (fe,<i>)dt = j {f(U)-f(u),<t>)dt. 

Next we realize that the true solution satisfies the weak formulation 

f  ((ü, 4>) + (eVu, V0) - (/(u), 0)) dt = 0, 

hence, 

I   ((e, 0) + (eVe, V0) - (/([/) - /(u), 0)) ^ 

= /   ((L>,0) + (eVf/,V0)-(/(t/),0))dt, 
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The sum of terms arising from the integration by parts in time simplifies 

N N-l 

n—l n~l 

and then simplifies further upon realizing that u~ = «+ and 4>N = 0. Using the 
definition (1.40) for the dG method, we obtain 
Theorem 1.49 

rT N 

/    (e^)dt = ((/-PH,<A(O)) + ^([f/lJ_1,(7rP0-0)+_1) 

[   ((U,nP<l>-<p) + (e(U)VU,V(nP<p-(i>))-tf(U),nP<l>-(p))dt.    (1.45) 
Jo 

rT 

+ 

The initial error is e   (0) = (I — P)UQ ■ 
If instead we desire to estimate (u(T).ip), for a function i/>. then the adjoint 

problem is 

0-V- (eV0) -/0 = O,    {x,t)eilx[T,0], 
tf>(x,t)=0, {x..t)edQx (T..0], (1.4G) 

^{x.T)=tp, xeQ. 

The resulting estimate is 
Theorem 1.50 

A' 

(e(T), VO = ((/ - P)u0; 0(0)) + ^([t/b-i, (?rP0 - ^O 
3 = 1 

+ /   (([/, TTP0 - 0) + (e(C/)Vc/, V(TTP0 - 0)) - (/([/), irP<t> - <j>)) dt.    (1.47) 
Jo 

A similar argument for the cG method, say for the global quantity of interest 
(1.43), yields 
Theorem 1.51 

/  (e,i>)dt = ((I-P)uo,<fi(0)) 
Jo 

+ [  ((Ü,nP<t>-4>) + {e(U)VU,V(nP4>-<t>))-(f{V),TrP4>-4>))dt.   (1.48) 
Jo 

In practice, wc compute a numerical solution of a linear adjoint problem ob- 
tained from (1.44). Typically, wc linearize around the computed approximate 
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solution and solve using a higher order method in space and time. Without spec- 
ifying the details, we denote the approximate adjoint solution by <J>. Focussing on 
the dG method; where application to the cG method is obvious, the approximate 
a posteriori error estimate then reads 

s: (e.ip)dt E(U) = E(U;TP) 

N 

((/ - P)u0: $(0)) + £([£/],-_,,(*/>* - $)+_,) 
j=i 

+ /    ((£/, TTP* - $) + (e(U)VU, V(TTP$ - $)) - (/([/), nP$ - $)) dt . 
Jo 

(1.49) 

Example 1.52 In (Sandelin, 2006), we consider the accuracy of the a posteriori 
error estimate applied to the chaotic Lorenz problem 

üi = —lOui + 10U2, 

«2 = 28ui — «2 — W1U3, 0 < t. 

Uj - -§W3 +U1U2, 

{ui(Q) = -6.9742, u2(0) = -7.008, u3(0) = 25.1377. 

The terms in (149) describing space discretization simply drop out in this case, 
and wc compute the resulting estimate. 

In Fig. 1.16, wc show the accuracy of the a posteriori error estimate for 
pointwisc values of each component at many times. Similar accuracy is obtained 

Simulation Final Time 

FIG. 1.16. Left: We plot an approximate error in each component of a numerical 
solution of the Lorenz problem computed by taking the difference between 
solutions with estimated error .001 and .0001 at many times. Right: we plot 
the pointwise error/estimate ratios for each component versus time at many 
time points. 

for other functionals, e.g. average error. 
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We illustrate the idea that the solution of the adjoint problem provides a kind 
of condition number for the computed solution. Following (Estcp and Johnson, 
1998), in Fig. 1.17, we show that the adjoint solution grows very rapidly when 
the solution passes through the tiny region near scparatix. On the other hand, 
the residual error of the solution remains small in this region. In this case, using 
only the residual, or indeed the "local error", fails completely to indicate that 
the error of the solution increases rapidly in a neighborhood of the separatix. 

Solution near t= 18 

FlG. 1.17. Left: We plot the accurate and inaccurate numerical solutions during 
the time that the inaccurate solution becomes 100% inaccurate along with the 
separatix. The inaccurate solution steps on the wrong side of the scparatix. 
Middle: Wc plot the norm of the adjoint solutions corresponding to pointwisc 
error. The adjoint solution grows exponentially rapidly only when the solution 
passes near the separatix. Right: Wc plot the residual for the inaccurate 
solution, which remains small even when the error becomes large. 

Example 1.53 In (Estcp et at.. 2002; Estcp and Williams, 199G; Estcp et at-, 
2000), we compute the a posteriori error estimate for the well-known bistable 
(Allen-Cahn) problem ü — eAu = v. — u3 posed with Neumann boundary condi- 
tions. This is used to model the motion of domain walls in a ferromagnetic ma- 
terial. The problem has two attracting steady state solutions 1 and -1. Generic 
solutions eventually converge to one of these two steady state solutions, but the 
evolution towards a steady state can take some time because of the interesting 
competition between competing stable processes, e.g. the diffusion that tends 
to drive a solution towards zero and the reaction that tends to drive a solution 
towards 1 or — 1. 

In one dimension, generic solutions form a pattern of layers between the values 
of-1 and 1, then solutions undergo long periods of metastability during which the 
motion of the layers "horizontally" is extremely slow punctuated by rapid tran- 
sients in which the solution moves to another mctastable state or the final stable 
state. VVc show the evolution of numerical approximation of a mctastable solu- 
tion with two mctastable periods [0, 44] and [44,144] in Fig. 1.18. The timescale 
of mctastable periods increases exponentially in l/\/e as the diffusion coefficient 
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FlG. 1.18. Left: The evolution of a metastablc solution of the bistable problem 
with e = .0009. Middle: Evolution of the time and space residuals on a uni- 
form discretization. Right: The evolution of the absolute adjoint weights for 
pointwise errors for time and space. 

e decreases. 
Wc plot the L2 space norms of the residuals versus time for numerical solu- 

tions computed on uniform discretizations. The time residuals reflect an initial 
transient and then the two transients concluding the metastablc periods. The 
space residual simply becomes smaller as the layers disappear. Finally, wc plot 
the L2 space norm of the adjoint weights corresponding to the time and space 
parts of the error estimate for the quantities of interest equal to pointwise values 
of the solution at a set of uniform time points. The weights grow in advance of 
the transients concluding the metastablc periods but immediately decrease to 
1 or smaller right after the transient, indicating that accumulated errors have 
damped. Thus, while the effects of errors grow during metastablc periods, the 
overall error accumulation remains bounded, implying that accurate long time 
solutions can be computed provided the meshes arc sufficiently refined. 

In two dimensions, the dynamics of the problem are much different because 
the evolution is governed by "motion by mean curvature", meaning that the 
normal velocity of a transition layer is proportional to the sum of the principle 
curvatures of the layer. Consequently, the time scale for the evolution increases 
only at an algebraic rate, n/e, where K is the mean curvature, as the diffusion 
coefficient e decreases. Wc solve the bistable problem using initial data consisting 
of two "mesas" corresponding to the two wells in the solution shown in Fig. 1.18 
using e = .00003 so that the evolution occurs over the same time scale. Wc show 
four snapshots of the solution in Fig. 1.19. The time evolution of the adjoint 
weights show a pattern of growth and decay as for metastablc solutions in one 
dimension. However, solutions in two dimensions are much less sensitive to per- 
turbations than solutions in one dimension, and the adjoint weights are much 
smaller overall. 

1.4.6    General comments on   a posteriori analysis 

We can abstract the four steps for a posteriori error analysis as 

1. Identify functional that yield the quantities of interest 
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t=U t= 54 

time 

FlG. 1.19. Left: Four snapshots of a bistable solution in two dimensions. Right: 
The evolution of the absolute adjoint weights for pointwise errors for time 
and space along with a the weights for a solution in one dimension. 

2. Define appropriate adjoint problems for the quantities of interest 

3. Derive a computable residual for each source of error 

4. Derive an error representation using a suitable adjoint weights for each 
residual 

We also note that in general we have to account for all sources of error in the 
analysis. Typical sources include 

• space and time discretization (approximation of the solution space) 

• use of quadrature to compute integrals in a variational formulation (ap- 
proximation of the differential operator) 

• solution error in solving any linear and nonlinear systems of equations 

• model error 

• data and parameter error 

• operator decomposition 

We have not discussed most of these sources in this note. However, it is 
important to realize that different sources of error typically accumulate and 
propagate at different rates, and so must be accounted for individually in any 
analysis. 

1.5      A posteriori error estimates and adaptive mesh refinement 

Computing accurate error estimates provides the tantalizing idea of optimizing 
discretizations. We briefly discuss the use of a posteriori error estimates for 
guiding adaptive mesh refinement. 
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A typical goal of adaptive error control is to generate a mesh with a relatively 
small number of elements such that for a given tolerance TOL and data ip, 

error in the quantity of interest  = |(e,-0)| ;$ TOL. (1.50) 

Wc note that (1.50) cannot be verified in practice because the error is unknown, 
so wc use an error estimate and try to construct a mesh to achieve 

a posteriori estimate of the error in the quantity of interest  ;$ TOL.     (1.51) 

The general idea is to write the estimate as a sum of "element contributions" that 
indicate the contribution from discretization on each element to the total error. 
Wc identify the elements that contribute most and then refine those elements. 

However, this simple description belies a number of theoretical and practical 
difficulties. 

1.5.1    Adaptive mesh refinement in space 

Wc first consider adaptive mesh refinement for a stationary problem. In the case 
of an elliptic problem, we use the estimate (1.32) to implement (1.51). To do so. 
wc rewrite (1.32) as a sum of (signed) element contributions, 

(e,i/<)~ J2   /((/-&• VU - cU){$ - nh$) -aVC/"-V(*-jrh*)) dx. (1.52) 

Thus using (1.52), (1.51) gives the goal of satisfying the following condition: The 
mesh acceptance criterion is 

<TOL. Yl   I {(f-b-VU- cU){i> - ?rh«) - aVU ■ V(<I> - 7r,,#)) dx 
KeT„ ■'K 

(1.53) 
If the current approximation satisfies (1.53), then the solution is deemed accept- 
able and the refinement process is stopped. 

The difficulties start when (1.53) is not satisfied. We have to decide how to 
"enrich" the discretization, e.g., refine the mesh or increase the order of the ele- 
ment functions, in order to improve the accuracy. The problem is that generally 
there is a great deal of cancellation among the contributions from each element. 
For example, consider that large positive contributions from one subrcgion might 
cancel the large negative contributions from another region so that the sum of 
the contributions from the two regions together is small, see Ex. 1.54 below. In 
fact, we make the certainly controversial claim that 
There is currently no theory or practical method for accommodating cancel- 
lation of errors in an adaptive error control in a way that truly optimizes 
efficiency. 

The standard approach is to formulate the discretization enrichment problem 
as a constrained optimization problem after replacing the error estimate by an 
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error bound consisting of a sum over elements of positive quantities. For example, 
wc obtain a bound from (1.52) by inserting norms in some way, e.g.. we use 

l(e,VOI<  5Z  / \(f-l>-VU-cU)($-irh$)-aVU-V($-irh<!>)\dx. (1.54) 

Thus, if (1.53) is not satisfied, then the mesh is refined in order to achieve the 
more conservative criterion, 

Y.   I \(f-b- VU-cU)($- *-,,*)-aVC/• V($ -7Th$) |dx<TOL. (1.55) 
K£Th ^

K 

The adaptive error control problem is the constrained minimization problem 
of finding a mesh with a minimal number of degrees of freedom on which the 
approximation satisfies (1.55). Using the fact that the bound in (1.55) is a sum of 
positive terms, and assuming the solution is asymptotically accurate, a calculus 
of variations argument yields the Principle of Equidistribution, which states 
that the solution of this constrained optimization problem is achieved when the 
elements contributions are all approximately equal. An adaptive mesh algorithm 
is a procedure for solving the constrained minimization problem associated with 
(1.55). If the Principle of Equidistribution is used, then the algorithm seeks to 
choose meshes so that the element contributions arc approximately equal. 

Depending on the argument, two possible clement acceptance criterion for 
the clement indicators are 

TOT 
max |(/ -b-VU- cU){$ - nh$) - aVU • V($ - 7rh$)| < -j^-,       (1.56) 

K j 111 

/, 

TOT 
|(/ -b-VU- cU){$ - nh$) - aVU ■ V($ - 7rh$)| dx < -j-,       (1.57) 

where M is the number of elements in Th- Elements that fail one of these tests 
arc marked for refinement. 

Computing a mesh using these criteria is usually performed by a "computc- 
estimate-mark-refinc" adaptive algorithm that begins with a coarse mesh and 
then refines those elements on which (1.56) respectively (1.57) fail successively. 
Sec (Eriksson et al, 1995; Eriksson et al.._ 1996; Becker and Rannachcr, 2001; 
Bangcrth and Rannachcr, 2003; Estep et al., 2005; Carey et al., 20086) for more 
details. 

The problem with any claims of "optimal" mesh selection is that genci ically 
the bound (1.54) is typically orders of magnitude larger than the estimate (1.52). 

Example 1.54 We illustrate the issue of the effect of cancellation of errors on 
the choice of an optimal adapted mesh with a simple computation. Assume that 
we solve an elliptic problem on a square domain using bilinear elements on a mesh 
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FIG. 1.20. On the left, we display (simulated) signed element contributions. We 
shade four elements chosen for refinement using a nonstandard criteria. On 
the right, we display the corresponding absolute clement contributions and 
shade four elements marked for refinement by a standard adaptive algorithm. 

consisting of rectangles and the a posteriori estimate yields the signed element 
contributions shown on the left in Fig. 1.20. The total a posteriori estimate is 

.1 + 3 x -.0333 + 17 x .001 + 4 x .01 = .0571. 

Note that the large element contribution in the lower left corner is nearly canceled 
by the contributions of its three neighbors, .01+3 x—.0333 = .0001. so that region 
ends up contributing relatively little to the error. If we refine in the upper right 
hand corner by subdividing each square into four smaller elements as indicated 
(and assume the clement contributions decrease by a factor of 22 = 4 without 
any change in sign), the new estimate becomes 

.1 + 3 x -.0333 + 17 x .001 + 16 x .01 x - x - = .0271. 
4     4 

Note that while we change 4 elements into 16 smaller elements, the element 
contribution in each goes down by a factor of 4 while the area of each smaller 
element is 4 times smaller than its parent. 

On the other hand, if we use the absolute element contributions to guide 
refinement, then the elements in the lower left hand corner are refined as shown 
on the left in Fig. 1.20, the new estimate becomes 

4x.lx-x-+3x(4x 
4    4 

.0333 x - x - )+17x.001 + 16x.01x-x- = .057025. 
4     4/ 4    4 

There is almost no improvement in overall accuracy in the quantity of interest. 

Regardless of the issue of dealing with cancellation of errors efficiently, there 
is still a crucial difference between adaptive mesh refinement based on adjoint- 
weighted residual estimates and traditional "error indicators" that often amount 
to using only residuals or "local errors." In the adjoint-based approach, the 
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element residuals are scaled by an adjoint weight, which reflects how much error 
in that clement affects the error in the quantity of interest. This has a significant 
effect of mesh refinement patterns in general. 

Example 1.55 In (Estep et al.. 2005), wc apply these ideas to the adaptive 
solution of 

'-V • ((.05 + tanh(10(i - 5)2 + 10(y - l)2))Vu) 

+ 

u = 0,     (x, y) 6 du 

+ [    100).Vu = L     {x,y) €fi = [0,10] x [0,2], 

(1.58) 
In Fig. 1.21 wc show the mesh required to obtain a numerical solution whose 

average value is accurate to within 4%. The adaptive pattern is obtained by 
refining from a coarse uniform mesh using (1.57). Convection causes a nonuniform 
pattern of refinement. 

FIG. 1.21.  The mesh used to solve (1.58) with an error of 4% in the average 
value requires 24.4000 elements. 

In the first computation, the quantity of interest is given by a function ip that 
is constant over the entire domain. In the next computation, we take the quantity 
of interest to be the average value in a square in one corner of the domain. Wc 
now require much fewer elements to achieve the desired accuracy. The pattern of 
refinement shows the effects of the adjoint solution, sec Fig. 1.22 and Fig. 1.25. 
In particular, the adjoint solution decreases rapidly to zero towards the side of 
the domain opposite to the quantity of interest region and there is less dense 
mesh refinement along that side. The influence of regions far "upstream" is also 
diminished. 

FIG. 1.22. The quantity of interest is the average value in the shaded square. 
The final mesh requires 7300 elements. 
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In the next computation, wc take the quantity of interest to be the average 
value in a square in middle of the domain. Again, the pattern of refinement shows 
the effects of the adjoint solution, sec Fig. 1.23 and Fig. 1.25. In particular, the 

FIG. 1.23. The quantity of interest is the average value in the shaded square. 
The final mesh requires 7300 elements. 

adaptive mesh refinement makes no attempt to resolve the boundary layer at the 
"outflow" boundary as the accuracy there has no effect on the accuracy of the 
quantity of interest. 

In the final computation, we take the quantity of interest to be the average 
value in a square in at the far end of the domain. Again, the pattern of refinement 
shows the effects of the adjoint solution, see Fig. 1.24 and Fig. 1.25. 

\ \ \ \ \ 

\ \ ASS 
\ \ \ \ \ \ 

FIG. 1.24. The quantity of interest is the average value in the shaded square. 
The final mesh requires 3500 elements. 

In Fig. 1.25, we plot the solutions of the adjoint problems corresponding to 
the quantities of interest equal to average values in squares at the opposite ends 
of the domain. 

FIG. 1.25. The adjoint solutions for the computations in Fig. 1.22 and Fig. 1.23. 



50   Error Estimates for Multiscale 'Operator Decomposition for Multiphysics Models 

1.5.2    Adaptive mesh refinement for evolutionary problems 

Traditionally, different approaches for adaptive mesh algorithms are used to han- 
dle spatial meshes and time discretization. Influenced by the long history of "local 
error control", the traditional time algorithm achieves an equidistribution of cl- 
ement contributions by insuring that the contribution from each time interval is 
smaller than, but approximately equal to. a "local error tolerance" LTOL before 
proceeding to the next time step. Often. LTOL is input directly without any at- 
tempt to relate it to the desired tolerance TOL on the error. Given a true global 
error estimate however and the asymptotic accuracy of the integration scheme, 
there are various heuristic arguments for determining LTOL in terms of TOL. 

For an evolutionary partial differential equation, space and time mesh re- 
finement strategies have to be combined somehow. In the case of a parabolic 
problem, we distinguish time and space contributions in (1.49) by "splitting" 
the projections on the adjoint solution, 

E(U) = ((/ - P)u0: $(0)) + £([I/b_i, (P* - *)/_!) 

+ /   (((/, P* - $) + (e{U)VU, V(P$ - $)) - (/((/), P$ - *)) dt 
Jo 

+E(Mi-i.((T-u/,*);-i) 

f   ((/y,(7r-l)P$) + (e(L/)W,V((7r-l)P<I>)) 
Ju 

-(f(U),(n-l)P*))dt 

+ 

We define bounds on the time and space contributions, 
(1.59) 

N        I r 
&tiu) = Y^ E    S[uh-i)U(*-vp*)U)fc 

j=\ Kerh < JK 

+ E E I I'"   I (#((* - 1)p*) + MV)™) ■ {V(n - 1)P$) 

- f{U)((ir - 1)P$)) dxdt ,    (1.60) 



Multiscale operator decomposition 51 

IE 
A'gTh j = l K€Th    

Jh' 

-f{U){P$-<S>))dxdt (1.61) 

Note that the space discretization may affect the time contribution and likewise 
the time discretization may affect the space contribution. 

We may now split the adaptive mesh problem into two sub-problems, refining 
the space and time steps in order to achieve 

TOT TOT 
Mx(U)<-^-andJEt(U)^^-. (1.62) 

On a given time interval, this requires an iteration during which both the space 
mesh and time steps are refined. 

1.6    Multiscale operator decomposition 

We now turn to the main goal of this chapter, which is to describe how the 
techniques of a posteriori error analysis can be extended to multiscalc operator 
decomposition solutions of multiphysics, multiscalc problems. Recall that general 
approach is to decompose the multiphysics problem into components involving 
simpler physics over a relatively limited range of scales, and then to seek the 
solution of the entire system through some sort of iterative procedure involving 
solutions of the individual components. 

While the particulars of the analysis vary considerably with the problem, 
there are several key ideas underlying a general approach to treat operator de- 
composition multiscale methods, including: 

• We identify auxiliary quantities of interest associated with information 
passed between physical components and solve auxiliary adjoint problems 
to estimate the error in those quantities. 

• We deal with scale differences by introducing projections between discrete 
spaces used for component solutions and estimate the effects of those pro- 
jections. 

• The standard linearization argument used to define an adjoint operator 
associated with error analysis for a nonlinear problem may fail, requiring 
another approach to define adjoint operators. 

• In this regard, the adjoint operator associated with a multiscale operator 
decomposition solution method is often different than the adjoint associ- 
ated with the original problem, and the difference may have a significant 
impact on the stability of the method. 
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• In practice, solving the adjoint associated with the original fully-coupled 
problem may present the same kinds of multiphysics. multiscale challenges 
posed by the original problem, so attention must be paid to the solution 
of the adjoint problem. 

We explain these ideas in the context of three examples. 

1.6.1    Multiscale decomposition of triangular systems of elliptic problems 

Following (Carey et ed., 2006), we can capture the essential features of the ther- 
mal actuator model described in Example 1.1 using a two component "one-way" 
coupled system of the form 

—V • o,iVui + b\ ■ Vui + ciu\ = fi(x). i£(l, 

-V ■ a2Vu2 + b2 ■ V«2 + c2u2 = f2ix.U1.D1ix),    x € fJ, (1.63) 

(_«! = «2 = 0, x e dQ, 

where at, b,. c,, f, arc smooth functions, with ffli, a2 > a > 0 on a bounded domain 
Q in R^ with boundary dQ, and a is a constant. Note that the problems are 
coupled through /2. The "lower triangular" form of this system means that wc 
can either solve it as a coupled system or wc can solve the first equation and then 
use the solution to generate the parameters for the second problem. The latter 
approach fits the idea of a multiscale, operator decomposition discretization. 

The weak form of the first component of (1.63) reads: find U\ 6 W2(Q) 
satisfying 

Ai(ui,vi) = (/i,i/i), forallui eH^(Q), (1.64) 

where 
-Ai(ui,vi) = (aiVui, V1/1) + (61 (a:) • Vui.vi) + (CJUI,I;I) 

is a bilinear form on 0 and Hg(fl) is the subspace of functions in //^(Q) that arc 
zero on dQ. Likewise the weak formulation of the second component of (1.63) 
reads: find u2 € HQ(Q) satisfying 

A2(u2,v2) = {f2(x,UuDu1),v2), for all v2 6 H^Q), (1.65) 

A2(u2,v2) = (a2Vii2, Vw2) + {b2(x) ■ Vu2.,v2) + {c2u2,v2), 

is another bilinear form on Q. 
We introduce the finite element space Sh,i(Q) C Hg(£l), corresponding to a 

discretization Th,i of fi for the first component, and another finite clement space 
Sh,2(Q), on a different mesh Th,2-, for the second component. Using different 
finite clement spaces for different components in a system of equations raises a 
serious practical difficulty. Namely, evaluating integrals defining finite element 
approximate solutions involve functions from different spaces is problematic. In 
practice, quadrature formulas are used to approximate the integrals defining 
a finite element function. This raises a potential difficulty because quadrature 

where 
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formulas work best when the integrands arc smooth, whereas the standard finite 
element functions are only continuous. We avoid potential difficulties by writing 
any integrals as a sum of integrals over elements. 

/ integranddx =  S_]   /   integranddx. 
K€Th ■ 

and applying quadrature formulas on each clement on which the finite element 
functions arc smooth. However, in the case of a system in which the components 
are solved in different finite element spaces, it is not so straightforward to apply 
quadrature formulas to evaluate integrals. A function in one finite element space 
may only be continuous on an element associated with another finite clement 
space. To avoid this problem, we introduce projections IT—j from «S/,,; to Shj, 
e.g. interpolants or an I? orthogonal projection. We apply these projections 
before applying quadrature formulas. 

Algorithm 2 Multiscalc Operator Decomposition for Triangular Systems of 
Elliptic Equations 

Construct discretizations %lt\.%iti and corresponding spaces Sh,i,Sh,2 
Compute U\ e Suti(Q) satisfying 

M{Ui,vi) = (/i.wi), for all vi € <SM(Q). (1.66) 

Compute U2 6 Sh,iiP) satisfying 

A2(U2,v2) = (/2(i,n1_2^i,n1_2l>l/i),^2)1 for all v2 e SM(fi).     (1.67) 

We observe that any errors made in the solution of the first component affect 
the solution of the second component. This turns out to be a crucial fact for a 
posteriori error analysis. 

Example 1.56 In (Carey et al., 2006), we solve a system 

-A«i =sin(47ri)sin(jrv),   xeft . 
,   ,-, ^ 2 /25sm(47ra;)\ ,, ,.,0, 

-Au2 = b- Vwi =0. 1 efi. b=-[      ■,     ,    ) (1.68 
' 7T   V     Sln(7Tx)      I X 

«1 = u2 = 0, x e sn, 

using a standard pieccwise linear, continuous finite element method, where n = 
[0, lj x [0,1), in order to compute the quantity of interest 

u2(.25,.25). 

We solve for u\. first and then solve for u2 using independent meshes and show 
the solutions in Fig. 1.26. 

Using uniform meshes, evaluating the standard a posteriori error estimate 
for the second component problem, ignoring any effect arising from error in the 
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FIG. 1.26.  Solutions of the component problems of (1.68) computed on uniform 
meshes. 

solution of the first component, yields an estimate of component solution error 
to be ~ .0042. However, the true error is « .0048 and there is discrepancy of 
~ .0000 (~ 13%) in the estimate. This is a consequence of ignoring the transfer 
error. 

If we adapt the mesh for the solution of the second component based on the 
a posteriori error estimate of the error in that component while neglecting the 
effects of the decomposition, sec Fig. 1.27. the discrepancy becomes alarmingly 
worse. For example, we can refine the mesh until the estimate of the error in the 
second component is ~ .0001. But, we find that the true error is ss .2244! 

Pointwise Error of u2 

^6 0^8 I (TO 

FIG. 1.27. Results obtained after refining the mesh for the second component 
so that the a posteriori error estimate of the error only in the second com- 
ponent is less than .001. The mesh for the first component remains coarse, 
consequently the error in the first component becomes relatively much larger. 

1.6.1.1 A linear algebra example We can describe some of the essential features 
of the analysis using a block lower triangular linear system of equations. We 
consider the system 
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tl) GO-GO-*- <"9> 
with approximate solution 

U2/        \«2 

VVc estimate the error in a primary quantity of interest involving only u2. 

(i)w,u) = (ip2
l),u2) where V = ( 

0 

41} 

We require a superscript (1) since we later define an auxiliary quantity of inter- 
est.The lower triangular structure of the system matrix yields residuals 

Ri =6i-Aut/i, 

R2 = {b2 - A21U1) - A22U2 . 

Note that the residual R2 of the approximate solution of the second component 
depends upon the solution of the first component, and any attempt to decrease 
this residual requires a consideration of the accuracy of U\ ■ The adjoint problem 
to (1.69) is 

/AT AJA U"\ _ ( 
\ 0   AJ2) [#)    - { 

0 

4l) 

and the resulting error representation is 

(^1),e)=(41),e2) = (A2
T

24
1),e2) 

= {<t>(2
] ,A22u2) - {ct>2

l) ,A22U2) 

= {41),b2- A2,ui) - (021'-A22U2) (1.70) 

= {<j>2
1),b2-A2lUl-A22U2) + (02

1),A21e1) 

= {<P2
l\R2) + (41},A2iei). 

The first term of the error representation requires only U2 and <p2   ■ Since the 
adjoint system is upper triangular and 

41) = (A2
T2)"1^1) 

is independent of the first component, the calculation of (</>2 , R2) remains within 
the "single physics paradigm", that is we solve the adjoint problem using indi- 
vidual component solves rather than forming and solving a global problem. The 
second term (<f>.2   . A2iCi) represents the effect of errors in U\ on the solution 
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U2. At first glance this term is uncomputablc, but we note that it is a    linear 
functional of ei since 

(41)
;A21e1) = (A2

T
14

1),e1). 

We therefore form the adjoint problem for the  transfer error. 

o"Aj2M^)i = rö ; = i V 

The upper triangular block structure of AT immediately yields (j>2 =0. As 

noted earlier, error estimates of ul should be independent of «2- Thus, A^^' = 

ip[ = A.2i(j>2 l so that once again we can solve for </><2' in the "single physics 
paradigm." Given $'2' wc obtain the auxiliary error representation 

(</>(2),e) = (^2),ei) = (Aj^U) = (AU?\ei) = (4>?\Ri).       (1.71) 

Combining the first term of (1.70) with (1.71) yields the complete error repre- 
sentation 

■      (^\e) = (^),R2) + ((p^,R1) 

which is a sum of the inner products of "single physics" residuals and adjoint 
solutions computed using the "single physics" paradigm. 

Example 1.57 Wc consider an 101 x 101 system with 

An = / + .2 x random matrix. 

A2i = random matrix. 

A22 = / + .1 x random matrix. 

where the coefficients in the random matrices are U{ — 1,1). The righthand side 
is also a random vector with £/( —1,1) coefficients. Wc solve the linear systems 
using the Gauss-Scidcl iteration with varying numbers of iterations, so that wc 
have control over the accuracy of the solutions. The quantity of interest is the 
average of the coefficients of u2. 

In the first computation, wc solve the first component Anf/i = 6i using 
20 iterations. The error in the resulting solution is « .031. When wc solve the 
second component A22[/2 = 62 — A2i[/i using 40 or more iterations, wc find an 
error in the quantity of interest of « 3.9 x 10-4. We cannot improve the accuracy 
of the second component regardless of how many iterations we use beyond 40. 
Solving the adjoint problems, wc find 

(?//", e) ==3.86x 10"4, 

{<p(2),R2) «3.1 x 10-8, 

{(j)^\Ri) «3.86X 10"4. 

The error in the quantity of interest is almost entirely due to the error in the 
solution of the first component. 
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In the second computation, we solve the first component AnUi = b\ using 
200 iterations. The error in the resulting solution is « 10~6. When we solve the 
second component A22U2 = b2 — A21U1 using 40 or more iterations, we find an 
error in the quantity of interest of « 10~7. This confirms that the error in the 
solution of the second component in the first computation is dominated by the 
error in the solution of the first component. 

1.6.1.2 Description of the a posteriori analysis We seek the error e2 in a quan- 
tity of interest given by a functional of u2. noting that that a quantity of interest 
involving u\ can be computed without solving for u2. Since we introduce some 
additional, auxiliary quantities of interest, we denote the primary quantity of 
interest by (i/>2   ,62). We use the adjoint operators 

■A\{4>V:V\) = (aiV0i,Vvi) - (div(&i0i),i/i) + (ci0i,Vi) 

A2(<h-.V2) = (a2V02. Vv2) - (div(6202)-«2) + (C202,«2)- 

We also use the linearization 

Lf2(ul)(u1 - Ui) =  f   M(Uia +[/,(!_ a)) dg. 
Jo   au\ 

Noting that the solution of the first adjoint component is not needed to 
compute the quantity of interest (ip. e) = (ip2 , e2) , we define the primary adjoint 
problem to be 

A2(4>2
}:V2) = {il)2

l)..v2), for all v2 6 W2
l{9). 

The standard argument yields the error representation. 

W,c) = {4l),e») = {f2(x,u1,Du1),<f>2
1)) -A2{U2..4

1))- (1-72) 

To simplify notation, we denote the weak residual of each solution component 
by 

TUiUuxw) = (fi(u),x)-At{Uux),    » - 1,2, 

so (1-72) becomes 

(TP,e) = n2(U2,4
1);ui), 

At this point, it is not clear that (1.72) is computationally useful since the 
residual on the righthand side of (1.72) involves the unknown true solution U\. 
One consequence is that we cannot immediately use Galerkin orthogonality by 
inserting a projection of </>(1' into the representation, since Galerkin orthogonality 
for U2 holds for residual ft2(£/2, <j>2

l)\ Ui) not 1Z2{U2,<l>2
l);ui). 
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To deal with this, we add and subtract (/2(£. U\, DUi), 4>2 ) m (1-72) and, 
assuming the same meshes are used for U\ and U2. use Galerkin orthogonality 
to obtain 

{ifi, e) = Tl2{U2, (I - n2)4
1); Ux) + {f2(x,Ul, Du,) - f2(x, Uu DU,).. <&l)), 

(1.73) 
where IT2 is a projection into the finite element space for U2. The first term on the 
right of (1-73) is the standard a posteriori error expression for the second com- 
ponent while the remaining difference represents the transfer error that arises 
from using an approximation of u, in defining the coefficients in the equation for 
u2. The goal now is to estimate this transfer error and its effect on the quantity 
of interest. 

We recognize that the transfer error is a (nominally nonlinear) functional of 
the error in u\, defining an auxiliary quantity of interest. We approximate it by 
a linear functional. 

U2(x,uuDux) - f2{x,UuDU,),<j>2
l)) * (Afc(tfi) xei,4") = (d,^)- 

VVc define the corresponding transfer error adjoint problem 

Al{4>{2),vi) = (^[2)^i) for all vi € W2\Q)., (1.74) 

noting that as for the primary problem, we do not have to solve the second 
component of the full adjoint problem. The transfer error representation formula 
is given by 

(ri2),ei) = {fl..(r-nl)4>[2))~Al(ui:(i-nl)<t>(?))., 

where 111 is a projection into the finite element space of U\. We obtain the error 
representation. 

(tf.e) =^2([/2:(/-n2)4
1);t/1) + TC1([/l!(/-n1)0

(
1
2)). (1.75) 

In the final step, we account for the error induced by using a multiscale 
discretization, i.e. different meshes for U, and U2- Example 1.56 shows that this 
can have a significant effect on overall accuracy. 

One issue is that we use 

/afolh-.atfi.IIi^alWi) 

in the equations defining the finite element approximation. Correspondingly, we 
alter the definition of the residual 

K2{U2,X\i>) = (/2(ni^),x) -A2{U2,x)- 

In addition, we use projections to treat any integral involving functions that 
arc defined on both discretizations, i.e. functions of Ui and </>;, i = 1,2. After 
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decomposing the original estimate to account for all the projections, the new 
error representation formula for the transfer error becomes 

(D/a(tfi) x ei.ns-,,41') + {Df2(Ui) x eu(I-U2_l)4>(2
1)) 

which is the error contribution arising from the transfer as well as an additional 
term that is large when the approximation spaces arc significantly different. 

The data tp^ defining the transfer error adjoint is now 

[fi(ui) - f2(U1),41)) « {DMUi) xeuna^4l)) = (i>i2\el). 

The additional term {Dj2{U\) x e\, (I — n2_i)</>2 ) is a linear functional, so wc 
define an additional auxiliary quantity of interest 

(i/>[3),ei) = {Df2(Ui) x eu(1 - IV,,)^1') 

and the corresponding adjoint problem 

A\{4[\v{) = {ii^-Vi) for all v, £ W2\Q). (1.76) 

The final error representation is therefore (Carey et al. 2006) 

Theorem 1.58 

(tf,e) = Tl2(U2, (I - n2)4
1);U1) + RiiUuil - n,)(^2) + 4>[3))) 

+ (n1_2/2(t/i) - ^(n^a^i), <t>2]) + ((/ - ni^2)/2(t/i);4
I))- 

(1.77) 

We emphasize that, evaluating the integrals in (1.77) is far from trivial. Wc 
have used Monte-Carlo techniques with good results, sec (Carey ct al.. 2006). 

Example 1.59 In Example 1.56. wc estimate the contributions to the error 
reported in that computation using the relevant portions of (1.77). To produce 
the adaptive mesh results shown in Fig. 1.27. wc construct the adapted mesh 
using equidistribution based on a bound derived from the first term in (1.77), 
i.e. neglecting the terms that estimate the transfer error. 

Instead, we consider the system (1.68) for the quantity of interest equal to 
the average value of U2. We begin with the same initial coarse meshes as in 
Fig. 1.27, but add the transfer error expression to the mesh refinement criterion. 
Adapting the mesh so that the total error in the quantity of interest for U2 has 
error estimates less than 10~4 yields the meshes shown in Fig. 1.28. Wc see that 
the first component solve requires significantly more refinement than the second 
component. 

Example 1.60 This example shows that differences in mesh discretization scale 
between the two components can contribute significantly to the error. We again 
solve (1.68) for the quantity of interest equal to U2(-i5,15). We begin with iden- 
tical coarse meshes for the two components, but refine only the mesh for 1/2- We 
solve the primary adjoint problem as well as the two auxiliary adjoint problems 
and show the results in Table 1.3. 
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FlG. 1.28. The adapted meshes resulting from the full estimate that accounts 
for "primary" and "transfer" errors. The transfer error dominates and drives 
the adaptive refinement. 

Primary Error Transfer Error Error from Scale Differences 
0.000713 0.0905 0.0325 

TABLE 1.3.  Error contributions when there is a scale difference in the meshes. 

1.6.2 Multiscale decomposition of reaction-diffusion problems 

Wc follow the presentation in (Estcp et, at, 2008a). In the introduction, we pre- 
sented operator splitting Alg. 1 for reaction-diffusion problems as a classic exam- 
ple of multiscale operator decomposition. Upon discrctizing a reaction-diffusion 
equation (1.4.4) in space using a standard piecewise linear, continuous finite cl- 
ement method as described in Sec. 1.4.1 we obtain a (high dimensional) initial 
value problem of the form (1.7). Wc can then apply the operator splitting al- 
gorithm Alg. 1. Finally, we discretizc the component problems of the operator 
splitting method using the cither the dG or cG methods on the independent time 
discretizations {tn}, {smn} described in Fig. 1.4. 

For example, if wc use the dG methods for both components, then the finite 
clement approximate solutions are sought in a piecewise polynomial spaces for 
the diffusion and reaction components respectively, 

V(«„) = /(/ . u\K e 7>(")(/n)11 < n < N\ , 

V{«'Hln) = {U : [/|/m,„ e V^\lm!n), \<m< Mn} , 

for n = l,--- ,N, and /„ = [tn-i,tn] and 7m,„ = [sm_i,„,sm,n]. V{qd){In) de- 
notes the space of polynomials in R' of degree qj. on In. A similar definition holds 
for V^qr\lm<n). We let C7j'~ denote the left- and right-hand limits of U at tn 

and [U]n = £/+ - U~ the jump value of U at tn. 
Let Y(t) be the piecewise continuous finite element approximation of the 

operator splitting with 
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The nodal values yn arc obtained from the following procedure: 

Algorithm 3 Multiscale Operator Splitting for Reaction-Diffusion Equations 

Set Y0 = i/o 
for n = 1, • • • , N do 

Set r;
0-n = r„_! 

for m = 1, ■ ■ • , Mn do 
Compute rr|/m „ G T^"' (/,„,„) satisfying 

/ (V', W) dt + [\yr]m-l,n.W*.l) =   / {F(Yr), W) dt 

for all  WeP^(ImtH)    (1.78) 

end for 
Set Yd~_, = rr

A-/n,n 

Compute Fd|/n e V{qd){In) satisfying 

/  {Yd,V)dt+ ([Yd\n-UV+_1) = I  {AYd,V)dt   for all  V € P(*d)(/n) 

(1.79) 
Sotü„ =;y''(i-) 

end for 

Adapting standard convergence analysis techniques, we can show that if / 
is Lipschitz continuous, then for q,i = 0,1 and qr = 0,1, there exists constants 
C\,C2, Ci such that, 

\yN - YN\ < CiAt + CiAt"^1 + C3As"-+1. 

In Ex. 1.5, we present an example in which multiscale operator decomposition 
affects the stability, and hence accuracy, of the solution. Such affects can take a 
myriad of forms. 

Example 1.61 In (Estep et al.. 2008a), wc illustrate the instability of operator 
splitting applied to the Brussclator problem (1.4). We apply a standard first 
order splitting scheme to a space discretization of the Brusselator model with 
500 discrete points with a = .6, ß = 2, k\ = ki = .025 consisting of the cG(l) 
method for the diffusion with time step of .2 and dG(0) method for the reaction 
with time step of .004. On the left of Fig. 1.29. we show a numerical solution 
that exhibits nonphysical oscillations that developed after some time. On the 
right, we show plots of the error versus time steps at different times. There is a 
critical time step above which the instability develops. Moreover, changing the 
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FIG. 1.29. The lefthand plot illustrates typical instability that can arise from 
multiscale operator splitting applied to Brusselator problem. Solution is 
shown at time 80. On the right, we show plots of the error in the L2 norm 
versus time step size at different times. 

space discretization docs not improve the accuracy. In fact, using a finer spatial 
discretization for a constant time step size leads to significantly more error in 
the long time solution, sec (Ropp and Shadid. 2005). 

The goal is to derive an accurate a posteriori estimate of the error in a 
specified quantity of interest computed from a multiscale operator splitting ap- 
proximate solution of (1.7). The estimate must account for the stability effects 
arising from operator splitting. In the analysis, we distinguish the effects of op- 
erator splitting from the effects of numerical discretization of the components. 
The operator splitting discretization Alg. 3 is a consistent discretization of the 
formal "analytic" operator splitting Alg. 1 and the numerical error arising in 
each component can be treated with the standard a posteriori analysis discussed 
previously. Estimating the error arising from the operator splitting itself requires 
a new approach. 

A main technical issue is the definition of a suitable adjoint problem because 
the standard approach used for nonlinear problems described in Sec. 1.4.3 fails. 
Indeed, the adjoint operator corresponding to the solution operator for an oper- 
ator decomposition discretization is typically different than the adjoint operator 
associated with the true solution operator. Because an adjoint problem carries 
the global stability information about the quantity of interest, accounting for the 
differences between adjoint problems associated with the original problem and a 
numerical discretization arc critical for obtaining accurate error estimates. 

In the estimate described below, this difference takes the form of "residuals" 
between certain adjoint operators associated with the fully coupled problem and 
an analytic operator split version. A practical difficulty with such a result is that 
solving the adjoint for the fully coupled problem poses the same multiphysics 
challenges as solving the original forward problem. We therefore develop a new 
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hybrid a priori - a posteriori estimate that combines a computable leading order 
expression obtained using a posteriori arguments with a provably higher order 
bound obtained using a priori convergence result. 

l.G.2.1 A linear algebra example We illustrate the ideas of the analysis in the 
context of solving a linear system 

My = b, (1.80) 

where Misan.xn matrix of the form 

M = I-e(A + B), 

with I denoting the identity matrix. A and B denoting n x n matrices, and e 
denotes a small parameter. By standard results, M is invcrtiblc for all sufficiently 
small e. 

The analog of an operator splitting for (1.80) is the problem 

Ny = b, (1.81) 

where 
N = (I-eA)(I-eB) 

is also invcrtiblc for e small. This follows from the observation 

M"1 = (I-e(A + B))~\    N"1 = (I-eB)"l(I-eA)"\ 

so that inverting N involves inverting operators involving only A and B individ- 
ually. Using the Neumann series to represent the inverse operators leads to the 
estimate. 

M-1 - N"1 = I + e(A + B) + e2(A + B)2 + g3(A + B)3 + • • • 

- (I + eB + e2B2 + e3B3 + • ■ •) x (I + eA + e2A2 + e3A3 + • • ■) 

= e2BA + 0(e3). 
(1.82) 

Wc consider the problem of solving (1.80) to compute the quantity of interest 
(y. i/>). We have the associated adjoint problems 

M*0 = ip,    N*0 = i>. 

If Y ss y is a numerical solution, the standard a posteriori analysis in Ex. 1.41 
gives 

(c,^) = (Y'-y,^) = (0,Ä),    R = SY-b. 

Since wc assume that problems involving N are solvable, this is a computable 
estimate. However, the error we wish to estimate is (Y — y,tf>). We write this as 

(Y -y,i>) = {Y- y,i>) + (y -y,i>) = (4>, R) + {y- y,$). 
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The second term on the right is the error arising from the operator splitting. 
Since these problems are linear, we can use the Greens function formulas 

to conclude 
(Y-y,iP) = (4>,R) + (j>-<p,b). (1.83) 

Example 1.62 We let A and B be random 500 x 500 matrices, where the 
coefficients in the random matrices arc U(—1.1), normalized in the 2-norm and 
e = .01. We set y to be a random vector, with U{—1,1) coefficients, and set 
b = My, which insures that y is a solution within machine precision. Finally, we 
set tj) = (1,0. • • ■ )T. We compute Y using Gaussian elimination. We find 

(Y-y,ip) « 5.376 x 10~5 

(0,Ä)« 1.221 x 10"15 

(0 - (j>, b) « 5.376 x 10"5. 

This means that nearly all of the error is captured by the effect of operator 
splitting on the adjoint solution. 

As noted above, (1.83) is problematic because it requires the solution of the 
"true" adjoint problem, which is unavailable in the operator splitting paradigm. 

1.6.2.2 Description of the hybrid a posteriori-a priori error analysis We now 
describe an error estimate for a multiscale operator decomposition solution of 
(1.7) that is composed of a leading expression is a posteriori and an a priori 
expression that is provably higher order. Sec (Estcp et al., 2008a) for the full 
analysis. 

We begin with the decomposition 

Y-y = (Y-y) + (y- y), (1.84) 

where y solves (1.7), y is computed via the abstract operator splitting Alg. 1, 
and Y is computed via the numerical operator splitting Alg. 3. 

The first expression on the right of (1.84) is the error of Y as a solution 
of the operator split problem. Note that Y is a consistent numerical solution 
for the analytic operator split problem and the expression for its error can be 
estimated using the standard a posteriori error analysis. We let {)d define the 
adjoint solution associated with the diffusion component (1.79) satisfying 

-dd = ATdd{t)..    tn>t>tn-i, 

tfd(t") = ^„. 

Furthermore, we let i?r define the adjoint solution associated with the reaction 
component (1.78) satisfying 
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-4r = (F'(y'\Y'))Td'(t);    s  > t > sm_i,ni 

1?r(«m,n) = Vm Jm,n' 

for m = M„, • - - , 1, with rA/„,n = &t-i and V>''„M, = ^,„ for m < Mn. Thus 
■&'' is continuous across the internal reaction time nodes s,„,n. m = 1, • • • . A/„ — 1. 
Here. 

F'(?/',r')= /   F'(syr + (l-s)rr)ds. 
Jo 

The second expression on the right of (1.84) is an abstract error of operator 
splitting. Following the analysis for the linear algebra example, we use analogs of 
the classic representation formula involving the Greens function of a linear ellip- 
tic problem to construct an estimate. The nonlincarity complicates the analysis 
however because we have to use linearization to define unique adjoint problems, 
which raises the issue of choosing a trajectory around which to linearize. We can- 
not use the standard approach of linearizing the error representation described 
in Sec. 1.4.3 because of the operator splitting. Instead, we assume that both the 
original problem and the operator split version have a common solution and we 
linearize each problem in a neighborhood of this common solution. For example, 
we assume that y = 0 is a steady state solution of both problems, which can be 
achieved by assuming that 

Homogeneity Assumption:      F(0) = 0, 

and we linearize in a region around 0. In terms of applications to reaction- 
diffusion problems, there are mathematical reasons for making the homogeneity 
assumption and it is satisfied in a great many applications. However, we can mod- 
ify the analysis to allow for linearization around any known common solution, 
see (Estcp et al, 2008a). 

To motivate this definition, we derive an abstract Greens function represen- 
tation. On time interval (t„_i,tn), we consider the linearized problem, 

V = Ay(t) + F'(y)y(t),    tn-X < t < tn, 

y{t,i-i) =yn-i, 

where         r\ 
[sy) ds. *(») = /  F'(s 

Jo 

We note that F'(y)y = F(y) because F(0) = 0. The generalized Greens function 
ip satisfies the adjoint problem 

-<p = ATtp(t) + F'(y)   <p(t),    tn>t>tn-1, (lg5) 

where ipn determines the quantity of interest (y(tn),iljn). and AT and F'(y) 
denote the transpose of A and F'(y), respectively. We choose ipn = f{tt)■. which 
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couples the local adjoint problems (1.85) to form a global adjoint problem. This 
definition yields a simple representation of the solution value over one time step 

(y.uV'n) = (yn-i-.fn-i); n = 1,2,-■■ , Ar =>  (VN^N) = (J/O.VAT)-     (1-86) 

We use analogs for (1.86) for solutions of each component in the operator 
splitting discretization. For n = 1, ■ • • . N, we define the three adjoint problems. 
The diffusion problem is simpler because it is linear. 

• (*.->=*. ( } 

It is convenient to let <J>^ denote the solution operator, so </j';(in_i) = $^^. We 
require two adjoint problems to treat the reaction component. The difference 
between the problems is the function around which they linearized, 

-ip\ = F'{Y)  <p\(t),    tn>t>tn-u (188) 

-<pl = F'{Y')  <pr2(t),    tn >t>tn.u , 

If $'n{z) denotes the solution operator for the problem linearized around a func- 
tion z. then we have ip\(tn-i) = $'n{Y)ipr

n and y3$(«„_i) = $r
n(Y

r)ipr
n- We can 

now prove (Estcp et al., 2008a). 

Theorem 1.63 A hybrid a posteriori - a priori error estimate for the. multiscale 
operator splitting dG finite element method is 

N     Mn      , 

.  {YN-yN,il>N) = J2Y, ( /      (Yr-F(V),i)r-W)dt 
n=lm=l   \-'r™.'> 

+ ([Hm-l,n,T5'X-l,n-nr+ _I>B)j 

+it, (I {yd-Ayd-'d'1 -md^dt 

+ ([yVi,<-1-n<t-1)) 
N 

+ J2 iXn-u (Ex + E2)i>n) + 0(M"«+2) + 0(At As«-"1"1), 
n=l 

where 

Ey. = l-ktn (A
T
F(Y) - T{Y)AT) , Fly) = / F'(Y)dt, 

E2 = (K(Y) - K(Yr)) K- 
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The first expression on the right is the error introduced by the numerical 
solution of the reaction component. Likewise, the second expression on the right 
is the error introduced by the numerical solution of the diffusion component. 
The third expression on the right measures the effects of operator splitting. 
The expression E\ is a leading order estimate for the effects of operator splitting 
while E2 accounts for issues arising from the differences in linearizing around the 
global computed solution as opposed to the solution of the reaction component, 
which affects the formulation of the adjoint problems. Both of these quantities 
are scaled by the solution itself, so that these effects become negligible when 
the solution approaches zero. Finally, the remaining terms represent bounds on 
terms that arc not computable but arc higher order. In practice, we neglect those 
terms when computing an estimate. 

Using the estimate requires the solution of five adjoint problems. But we avoid 
the need to solve an adjoint problem corresponding to linearization around the 
true solution by deriving the hybrid estimate. 

1.6.2.3    Numerical examples   We describe some examples in (Estep et al. 2008a). 

Example 1.64 The first example is partial differential equation version of Ex. 1.5, 

ot     uuo 9x* _ u ■ x e (0,1),* > o: 

u(0,t) =u(l,t) = 0, t > 0, 
u(x,0) = 4i(l - x), x e (0,1). 

The solution of the reaction component exhibits finite time blow up when un- 
damped by the diffusion component. This is perhaps the most extreme form of 
instability. For this computation, we use 20 spatial finite elements. Table 1.4 
shows the ratio of the error to the estimate computed at the final time T = 1. In 
this computation, we keep the reaction time step constant and vary the diffusion 
time step and number of reaction time steps. We sec that the estimate is very 
accurate for a range of time steps. 

TABLE 1.4. Operator splitting error estimate for the blow up problem at T ■ 
reaction time step = 10-3 

1, 

At M Exact Err (%) Error/Estimate 
10-1 100 11.07 1.0286 
io-J 10 1.35 1.0067 
10~3 1 0.45 1.0020 

Example 1.65 We next consider the Brussclator problem (1.4) with a = 2, 
ß = 5.45, ki = 0.008, k2 = 0.004 and initial conditions Ui(x,0) = Q + 0.1 sin(7rx) 
and U2{x, 0) = ß/a + 0.1sin(7rz). which yields an oscillatory solution. In this 
case, the reaction is very mildly unstable, with at most polynomial rate accumu- 
lation of perturbations as time passes. We use a 32 node spatial finite clement 
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discretization, resulting in an differential equation system with dimension 62. 
Wc note that in original form, the reaction terms do not satisfy the requirement 
F(0) = 0 so we linearize around the steady state solution c with with c; = a for 
i = 1, • • • , Ne - 1 and a = ß/a for i = Ne, ■ ■ ■ , 2Ne - 2, so that F(c) = 0. 

Fig. 1.30 compares the errors computed using At = 0.01 and M = 10 reaction 
time steps to the hybrid a posteriori error estimates. We show results for [0,2], 
when the solution is still in a transient stage, and at T = 40 when the solution 
has become periodic. All the results show that the exact and estimated errors 
are in remarkable agreement. 

0.2   0.4   0.6   0.8 
Component 

,0.5      1       1.5 
Time 

0.2   0.4   0.6   0.8    I 
Component 

FIG. 1.30. Brussclator results. Left: Comparison of errors against the spatial 
location at T = 2. Middle: Time history of errors at the midpoint location 
on [0, 2]. Right: Comparison of errors against the spatial location at T = 40. 
The dotted line is the exact error and the (+) is the estimated error 

1.6.3    Multiscale decomposition of a fluid-solid conjugate heat transfer problem 

Following (Estep et al.. 20086), wc next consider the multiscale decomposition 
solution of the heat transfer problem described in Example 1.3. The weak for- 
mulation of (1.5) consists of computing u 6 Vp, p e LQ(QF). Tp e Wp and 
Ts € Ws such that 

ai(u. v) + C\(uru.v) + b(v,p) + d(Tp,v) = {f.v), 

b(u,q) = 0, (1.90) 

a2{TF,wF) + c2{u.Tp,wF) + a3(Ts,ws) = (QF,WF) + (Qs,ws)-. 

for all v 6 VF,O; q 6 LQ(JIF), WF 6 Wpfi and ws € Ws,o-, where 

ai(u.v) = Jn   fi(Vu : Vv) dx, a2{Tp,uip) = /n   kpCVTp ■ Vwp) dx, 
a3(Ts,ws) =7ns ks(VTs ■ V»s) dx, b(v,q) = -JnF(V-v)q dx, 
Ci(u,v,z) = Jn   pu(u-V)v ■ z dx, c2(u, T, w) — Jn   pocp(u ■ VT) w dx, 
d(T, v) = fQF plßTg -vdx, / = Po (1 + ßT0)g, 

and 
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VF = {ve Hl(nF)\v = gu,D on ru,o}, VF,O = {ve VF\v = Qon r„,D}, 
WF = [w 6 H1

(U.F) I w — grF,D on TTF,D} ,   WF,O = {"w 6 WF | w = 0 on Tr^o} , 
Ws = {w e //'(fis) |«) = grs,D on IYS.D} ,     VKs.o = {w E Ws | w = 0 on rrs,D} . 

To discretize. we construct independent locally-quasi-uniform triangulations 
Tpji and Ts,h of fiF and fis respectively. We use the pieccwise polynomial spaces 

V£ = {v € VF | i; continuous on f2F. i>; £ P2(K) for all A' 6 TF|/,} . 

Zh = [z £ Z \ z continuous on QF, z€ Pl{K) for all K £ rF?h} , 

WF = {w £ VV> | w continuous on Q.F, w £ P2{K) for all K £ rF]h} . 

VK5 = {w eWs \ w continuous on Qs. w 6 P2(K) for all /\ £ TS^} , 

and the associated subspaccs 

Vpß = {veVh |V = 0onru,D}, 

WFi0 = {w € W£ I w = 0 on rTF,D} , 

V7|0 = {w € Wt I w = 0 on rTs,D and w = 0 on T/} . 

where Pq(K) denotes the space of polynomials of degree q on an element K. 
Note that Wg0 is different than WF0 in an important way since TTS,D docs not 

include T/. We let Try, ir\yF; K\Vs\ and ^z be projections into VF. WF. Wa and 
Zh respectively. Wc also use TTWF and i*ws to denote projections into Wp and 
Wg respectively along the interface Tj. 

Algorithm 4 Multiscale Decomposition Method for Conjugate Heat Transfer 
k = 0 
while (\\T<.k} - wsTF

k]\\r, > TOL) do 
k = k+l 
Compute Tg/} £ Wg such that Tc^ = ^wsTF'^    along the interface T/ 

and 
a3{T{

s
kl,w) = {Qg,w):    VweW£0, (1-91) 

Compute uf} £ V#, p£fc) £ Z'1 and T$ £ W£ such that 

{al{u[kKv) + cl{u[k\ulk\v) + b{vJk)) + d(TF
klv) = (/,«), V« € l$0, 

&(4fc},g)=0, V9eZ\ 
a2(r#>, «,) + c2(4

fc}, r#>, «,) = (QF, w) - (ks(n ■ VT$),w)r,, 
\/w £ WF0. 

(1.92) 
end while 

To compute a stable solution of the fluid equations; wc choose VF and Zh to 
be the Taylor-Hood finite element pair satisfying the discrete  inf-sup condition 
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b(v.q) 
inf sup „ ,; ■;/..  >ß>0. 

i^z" vev£ IMIi ■ Iwllo 
(1.93) 

We also note that the convergence of the iteration defined by this Algorithm 
depends on the values of ks and kF along the interface and the geometry of each 
region. Often, a "relaxation" is used to help improve convergence properties. We 
choose a € [0,1) and impose the relaxed Dirichlet interface values 

,{k) 
■ aT, {fc-i} + (l-a)nFTs 

{fc-i} 

This affects the analysis, but we do not discuss that here, sec (Estep et al., 2008a; 
Estep et al., 20086). 

1.6.3.1    Description of an a posteriori error analysis   We define the adjoint 
using the standard linearization approach. VVc define the errors 

u — u W 
h    'LP 

Jk) 
P - PH\ZTF =TF- TF)>b and eTs =TS-Tl 

k) n{k) 
LS,h ■ 

x € QF, 

x e ttF, 
x G QF. 

xe r,, 

x e Qs, 

The adjoint problem for the quantity of interest 

(T/I, e) = {ipu, eu) + {ipp, e„) + (V>7>, eTp) + (V"rs, ers) 

for the coupled problem (1.5) is 

f -fiA<{> + cl(<t>) + Vz + c*2u {9F) = i>u, 

-V • 4> = VP, 

-kFA0F+r2T(eF) + Poß{g ■ <t>) = if>TF: 

9F = 6s, 
kF(n-V8F) = ks{nV8s), 

{-ksA6s =i>Ts: 

with adjoint boundary conditions 

'0 = 0, zeru,D, 
d(j) 

PQ-=0, xeru^N, 
0F = 0, x € TTFID, 

kF(n-V9F) = 0, xerTFtN, 
9s = 0, xe rTs,D, 

>-s(n-V6»s) = 0, xerTstN. 

Here, we have used the linearizations 

ci(4>) = 2^oV(u + u;t) • <j>- -po(u + uh) ■ V0- -po(V- (u + uh))0, 

(1.94) 

(1.95) 

c^u(ö) = -poCpV(r + rh)e, 

C2T(6>) = --poCp (u + uh) ■ V0 - -/30Cp (V • (v. + uh)) 9. 
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We solve (1-94) numerically using an iterative operator decomposition ap- 
proach as for the forward problem. These iterations are completely independent 
of the forward iterations. In (Estep et al, 2008a; Estep et al, 20086). we derive 
estimates that only require adjoint solutions of the two component problems. 

To write out the a posteriori error representation, we introduce an additional 
projection rfv   : H2 —> Ws

l 0 defined such that for any node xt 

o   a <    \     jnws9s(xi),    %i i T/, 
[0, x, € I/, 

along with ng9s = TTWS ®S — ^w ®s- The role of these projections is made clear in 
the context of improving accuracy, sec (Estep et al, 20086) and remarks below. 

We can now prove (Estep et al, 20086), 

Theorem 1.66  The errors satisfy 

(lp,e) = (/, 0- Kv4>) -ai(u[k\(j>-1VV(j)i) -Ci(l4     ,t4     10-7IV0) 

- b{<f> - nv<t>,Ph) - d{T{
Fy,<{> - 7vv4>) - b{u[k\z - TXZZ) (1.96) 

+ (QF, OF - nw,0F) - a2(T^, 8F - vWrBF) 

- c2{u[k),TF
kl,eF - 7rWFeF) + (Qs,es - nWses) 

-^(T^,es-nWses)        (1.97) 

+ {TskH - ^sTF
klks(n ■ V0s))r, + {nsTFy - T#>, ks(n ■ Vös))f; 

(1.98) 

+ (ks(n ■ VT$), irwFeF)Ti + (Qs,nWses) - a3(T<*}, 7r„,s0s).   (1.99) 

The contributions to the error arc 

• Equations (1.96)-(1.97) represents the contribution of the discretization 
error arising from each component solve. 

• Equation (1.98) represents the contribution from the iteration. 
• The first term in (1:99) represents contribution of the transfer error while 

the remaining terms represent the contribution arising from projections 
between two different discretizations. 

Example 1.67 We consider an example from (Estep et al, 20086). For the flow 
past a cylinder shown in Figure 1.2, we solve the steady non-dimensionalizcd 
Boussinesq equations in the fluid domain and the non-dimensional heat equation 
in the solid domain. To simulate the flow of water past a cylinder made from 
stainless steel, we set the dimensionless constants Pr = 6.6 and kn = 30, and 
choose the inflow velocity and the temperature gradient so that, 

Re = 75.   Pe = 495,   Fr = 0.001.   Ra = 50. 
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The temperature gradient is imposed by setting different temperatures along the 
top and bottom boundaries, with a linear temperature gradient on the inflow 
boundary, and an adiabatic condition on the outflow boundary. 

We show results for two quantities of interest. The first is the temperature in 
a small region in the wake, located approximately one channel width downstream 
of the center of the cylinder and 1/4 of a channel width below the upper wall. 
The second is temperature at a small region in the center of the cylinder. In each 
case, wc derive an a posteriori bound by the usual methods, and base adaptivity 
on an element tolerance of 1 x 10-8. 

We show the final adaptive meshes for the flow in Fig. 1.31 and for the solid 
in Fig. 1.32. For the first quantity of interest, the flow mesh is most refined 
near the region of interest and upstream of the region of interest, locating more 
elements between the cylinder and the top wall than the cylinder and the bottom 
wall since the flow advecting heat to the region of interest passes above rather 
than below the cylinder. The solution downstream of the region of interest can 
be computed with less accuracy as is recognized by the coarser mesh. For the 
solid, the mesh is highly refined along the top in order to increase the accuracy 
of the normal derivative that is computed in the solid and used as a boundary 
condition in the fluid computation. Evidently, the normal derivatives elsewhere 
on the interface have less of an influence on the first quantity of interest. For the 
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FlG. 1.31. Upper: Final adaptive mesh in the fluid when the quantity of in- 
terest is the temperature in a small region in the wake above the cylinder. 
Lower: Final adaptive mesh in the fluid when the quantity of interest is the 
temperature in a small region in the center of the solid. 

second quantity of interest, the mesh is highly refined upstream of the cylinder. 
We note that the refinement downstream of the cylinder corresponds closely to 
the recirculation region, and the mesh refinement is slightly asymmetric about 
the midplane of the channel due to the asymmetric initial mesh. The mesh in the 
solid is refined uniformly near the boundary, reflecting the fact that the error 
in the finite element flux makes a significant contribution to the error in the 
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quantity of interest. 

07 

0 

-0.2 

-0.3    -0.2    -0.1 0.1      0.2      0.3 -0.3    -0.2    -0.1 0.1      0.2      0.3 

FIG. 1.32. Left: Final adaptive mesh in the solid when the quantity of interest is 
the temperature in a small region in the wake above the cylinder. Right: Final 
adaptive mesh in the solid when the quantity of interest is the temperature 
in a small region in the center of the solid. 

1.6.3.2 Loss of order and flux correction The meshes shown in Fig. 1.31 and 
Fig. 1.32 arc highly refined near the interface. This reflects the fact that there is 
significant error in the numerical flux passed between the components. It turns 
out that this pollutes the entire computation, so that overall the method loses 
an entire order of accuracy. 

Example 1.68 We apply Alg. 4 to the steady flow of a Newtonian fluid in a 
two-dimensional channel connected along one boundary to a solid which is heated 
from below as shown in Fig. 1.33. 

Fluid 

2.S      3      3.5 

FIG. 1.33.   Left: Computational domain for motivational example. Right: Tem- 
perature fields within the fluid and the solid. 

The Reynolds number (based on the channel width and the flux averaged 
inlet velocity) is Re = 2.5 and the thermal conductivities arc kp = 0.9 and 
ks = 1 + 0.5sin(27rx) sm(2wy). which are chosen so that the solution is smooth, 
but nontrivial. The temperature fields are displayed in Fig. 1.33. 

We solve the problem iteratively and, to approximate the error, we compute 
a reference solution with a higher order method on the same mesh. In Fig. 1.34, 
we compare the L2 errors in the temperature fields over fis U ftp on a series of 
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meshes that align along the interface T/. 

-1.3  -1.2  -1.1   -1     -0.9 -0.8  -0.7-0.6 

Log(h) 

FIG. 1.34.    Comparison of the mesh size, h. versus the L2 error in the temper- 
ature field when the finite clement flux is passed. 

We sec that the solution converges at a second order rate, rather than the 
optimal third order rate. This loss of order is a consequence of the operator 
decomposition as the computed boundary flux obtained from the finite element 
solution is one order less accurate than the solution itself and this error pollutes 
the rest of the computation. 

One way to compensate for the loss of order is by refining the mesh locally 
near the interface. Another way is to compute the particular information, in this 
case the flux on the interface, more accurately. It turns out that we can adapt a 
post-processing technique called flux correction developed originally by Wheeler 
(Wheeler, 1974) and Carey (G.F. Carey, 1985; Carey, 1982) to recover boundary 
flux values with increased accuracy. 

We denote the set of elements in TS h that intersect the interface boundary 
by '    _ 

*s,'h = {tf e TSih | A-nrv^0}, 

and consider the corresponding finite element space 

Eh = {v € P2(K) with K € rj/h, v(Vi) = 0 if Vl i r,}, 

where {77,-} denotes the nodes of clement K. The degrees of freedom correspond 
to the nodes on the boundary. We compute c^' 6 £/, satisfying 

-(rrW (*<*>,u)r/ = (QS,v) -a-,(T^,v),   for all v e E h, 

n{fc} where Tg h' solves (1.91). Since the dimension of the problem scales with the 
number of nodes on a boundary, it is relatively inexpensive to solve. 

The modified Algorithm is given in Alg. 5. 
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Algorithm 5 Multiscale Decomposition Method for Conjugate Heat Transfer 
with Flux Correction  

k = 0 
while (||TJfc} - 7rsT^}||r, > TOL) do 

k = k+] 
Compute Tg]] £ W$ such that T$2 - 7lwsTFh      along the interface T/ 

and 

«s(3s,fc}, w) = (Qs: u/),   Vw e w£0l (1.100) 

Compute a^ e £/, solving 

-((r(*}|t,)ri = (Qs/U) _ ^(TJ^.v), V« € Sfcl (1.101) 

Compute u{k) € V£, p^1 6 Z'1 and T^ € W$ such that 

&(u<*}
l9)=0, v9ez\ 

MTFkh-w) + ^(u[k),T{
F
k^w) = (QF,w) - {o^\w)ri , Vw € W*0. 

(1.102) 
end while 

It turns out that using the recovered boundary flux leads to a cancclation of 
the "transfer error" term in the error representation formula, which is the source 
of the loss of order. The new theorem reads (Estcp et al., 20086), 

Theorem 1.69  The errors satisfy 

{ip,e) = (/, <j>-irv4>) - ai(ulk},<p-iTV(pi) -ci(u}k},ulk),d>- nv<p) 

- b(4> - nv<p..Ph) - d{T^]
h.,4> - nv<p) - b{u[k)., z - nzz)       (1.103) 

+ {QF-.OF ~ *wF0F) - a2{T^k)
h,eF - nWF6F) 

- c2{u{k\T{k)
h,eF - nWFeF) + {QS,6S - nWses) 

-a3(T$,ds-irwsOs)    (1.104) 

+ (rj,fc} - *sT$,ks(n ■ V0s))r, + {nsT<% - TJ#tks(n ■ V0s))r, 
(1.105) 

+ (<T{k],*wF9F-Trws9s)     ■ (1-106) > \ / r t 

Note the difference in (1.106) compared to (1.99); now there is only a projection 
error arising from a change of scale, without any transfer error expression. 

We can prove that using the recovered flux recovers the expected cubic order 
of convergence, sec (Estep et al.. 20086). 
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Example 1.70 The recovered accuracy is easily demonstrated by considering 
the adapted meshes produced by (1.103)-(1.106). We repeat the computations 
in Ex. 1.67 using the modified error bound with the recovered flux derived from 
(1.103)-(1.106) to guide adaptive mesh refinement. We show the final adaptive 
meshes for the solid in Fig. 1.35. There is no mesh refinement near the boundaries, 
indicating that the flux error is no longer dominant. 

-0.3   -0.2   -o.i 0.1      0.2     0.3 -0.3   -0.2   -0.1       0       0.1      0.2     0.3 

FIG. 1.35. Left: Final adaptive mesh in the solid when the quantity of interest is 
the temperature in a small region in the wake above the cylinder. Right: Final 
adaptive mesh in the solid when the quantity of interest is the temperature 
in a small region in the center of the solid. 

1.7    The effect of iteration 

In the presentation above, we have minimized the effects arising from the solu- 
tion of nonlinear and/or fully coupled systems by carefully choosing the models 
and results that are discussed. Referring back to Fig. 1.3. we generally expect 
multiscale operator decomposition to require a number of iterations between the 
physical components. This raises additional issues that need to be addressed. 
eg. 

• The convergence of the iteration is always paramount. Note that the con- 
vergence is strongly affected by the fact that wc arc repeatedly upscaling 
and downscaling information. Indeed, this may even affect the definition of 
convergence, e.g. when coupling stochastic models to continuum models. 

• When iteration is required, then we are passing information, along with 
error, between iteration levels as well as physical components, and this re- 
quires defining additional auxiliary quantities of interest and corresponding 
adjoint operators. 

• The "single physics paradigm" means that in practice wc may have access 
only to adjoint operators associated to the components, but not to the 
entire system. This has strong consequences on which contributions to the 
error may be estimated. 
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These issues are discussed in (Estcp et al., 2008a; Estcp et al., 2008ft; Carey 
et al., 2008a; Estep et al, 2008a; Estcp et al., 2008ft). 

1.8    Conclusion 

Multiphysics, niultiscale models present significant challenges in terms of com- 
puting accurate solutions and for estimating the error in information computed 
from numerical solutions. In this chapter, we discuss the problem of computing 
accurate error estimates for one of the most common, and powerful numeri- 
cal approaches for multiphysics. multiscalc problems called multiscale operator 
decomposition. This is a widely used technique for solving multiphysics, mul- 
tiscale models. The general approach is to decompose the multiphysics and/or 
multiscale problem into components involving simpler physics over a relatively 
limited range of scales, and then to seek the solution of the entire system through 
some sort of iterative procedure involving numerical solutions of the individual 
components. In general, different components are solved with different numerical 
methods as well as with different scale discretizations. This approach is appeal- 
ing because there is generally a good understanding of how to solve a broad 
spectrum of single physics problems accurately and efficiently, and because it 
provides an alternative to accommodating multiple scales in one discretization. 

In the first part of this chapter, we describe the ingredients of adjoint-based 
a posteriori error analysis. We stress the need to accurately quantify stability of 
particular information to be computed from a model and the role of the adjoint 
problem for this purpose. 

Turning to specific examples of multiscale, multiphysics models, we illustrate 
the general observation that the stability properties of such models arc exceed- 
ingly complex. This heightens the importance of obtaining accurate information 
about stability. 

We then describe how the techniques of a posteriori error analysis can be 
extended to multiscale operator decomposition solutions of multiphysics, mul- 
tiscale problems. While the particulars of the analysis vary considerably with 
the problem, there are several key ideas underlying a general approach to treat 
operator decomposition multiscale methods, including: 

• We identify auxiliary quantities of interest associated with information 
passed between physical components and solve auxiliary adjoint problems 
to estimate the error in those quantities. 

• We deal with scale differences by introducing projections between discrete 
spaces used for component solutions and estimate the effects of those pro- 
jections. 

• The standard linearization argument used to define an adjoint operator 
associated with error analysis for a nonlinear problem may fail, requiring 
another approach to define adjoint operators. 

• In this regard, the adjoint operator associated with a multiscale operator 
decomposition solution method is often different than the adjoint associ- 
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atcd with the original problem, and the difference may have a significant 
impact on the stability of the method. 

• In practice, solving the adjoint associated with the original fully-coupled 
problem may present the same kinds of multiphysics. multiscale challenges 
posed by the original problem, so attention must be paid to the solution 
of the adjoint problem. 

We explain these ideas in the context of three specific examples. 
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ABSTRACT 

In this paper, we analyze a multirate time integration method for systems of ordinary differential equa- 
tions that present significantly different scales within the components of the model. The main purpose of 
this paper is to present a hybrid a priori - a posteriori error analysis that accounts for the effects of pro- 
jections between the coarse and fine scale discretizations, the use of only a finite number of iterations in 
the iterative solution of the discrete equations, the numerical error arising in the solution of each com- 
ponent, and the effects on stability arising from the multirate solution. The hybrid estimate has the form 
of a computable a posteriori leading order expression and a provably-higher order a priori expression. We 
support this estimate by an a priori convergence analysis. We present several examples illustrating the 
accuracy of multirate integration schemes and the accuracy of the a posteriori estimate. 

© 2012 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper, we analyze a multirate numerical method for a sys- 
tem of ordinary differential equation that presents significantly dif- 
ferent scales for the rate of change of individual components of the 
model. A multirate method employs discretizations on significantly 
different time scales for different components of the problem. For 
simplicity, we consider a model that can be decomposed into two 
vector-valued components: findy = (yuy2)

T 6 R" that satisfies 

'i/\ =Fi(Vi.y2). 

y2 = F2(y,,y2). 

.y,(0)=g,,y2(0)=g2, 

re (0,71, 
re (0,7], (i) 
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for a given initial condition g= (gi,g2)T- Here, y, 6 R"',i = 1,2,n = 
n, +n2,and F = (F,,F2)

T6 R", with ^(y) = F,(y,,y2) e R"', i — 1,2. 
If F] and F2 induce significantly different rates of change in the 
respective solution components, then an heuristic consideration of 
accuracy suggests that it is most efficient to solve (1) using small 
time steps for the fast component and large time steps for the slow 
component. While we have assumed the form of (1) in which the 
slow and fast components are distinguished for the sake of exposi- 
tion but we do not use knowledge of the slow and fast components 
in the analysis. Indeed, the estimates we obtain can be used to 
determine if a particular identification of fast and slow components 
is correct. Also, the method and analysis extend to systems with 
more than two scales in a straightforward way. 

Such multiscale systems arise in a variety of applications, e.g. 
fusion and fission, reacting flows, circuit analysis, convection prob- 
lems, and mechanical systems. As a useful example, we consider a 
discrete model consisting of a wire in a state of constant tension T 
supporting N masses, see Fig. 1. The masses m„ i = 1 N have hor- 
izontal positions x„ i= 1 N and vertical positionsy„ / = 1 N. 
The horizontal spacing between masses is o> = xr-xr_,, 
r= 1 N. Applying Newton's second law and assuming the ten- 
sile forces are large compared with the gravitational forces, a linear 
damping model and that the masses are free to move in the vertical 
direction only, we have 

mr^=-Tsin(Or) + Tsin(0r+,)-2yr-
dy' 

dr dt 
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Vl xr xr+l 

Fig. 1. A model of masses connected by a wire under tension. 

where 0r and 0ni denote the angles (measured positive counter- 
clockwise) between the horizontal and the wires connecting the 
masses mr_i and mr, and mr and mr,i respectively as illustrated. 

Without loss of generality we assume that T = 1 and 
yo = }>N*\ - 0. To create a system with two time scales, we consider 
two heavy masses coupled to (N - 2) lighter masses with 
m0 = mi =M » m2 = ■■■ - mN = m, a, = a2 =A» a3 - •■■ = aN = aN+i = 
a, see Fig. 2(a). and define r = y,M~x =y2M~l and y = y2rrr' = 
■ ■■yNm~'. Making the small angle approximation sin(fl)»fl« 
tan(0)and     introducing     vr = 4jfc,r=\,...,N,     and     vNtr = yr, 
r= 1 N, we rewrite the system as a 2fV-dimensional system of 
first-order differential equations 

dv_ (  D       AN 
(2) 

where 

f-2(AM)-' 
(AM)-' 

A = 

-( 

0 

0 
-2n2,2 

o 

'{AM)" 

-(/UM)-'-(aM)" 
(amy' 

0 \ 

0 0 

(aM)~' 0 

-2(am)~'  (am)- 

(am)'' -2(am)"'    (am)'' 

(am)''    -2(am)"' / 

-2/1, 

and l„xn denotes the n x n identity matrix and 0nj<n is the n x n zero 
matrix. We set (V = 7, A = .25, a = .1, M = 10, and m = .01 and plot a 
typical solution in Fig. 2(b). The two scales for evolution are clear. 
We also show the pointwise accuracy for several multirate numer- 
ical solutions in Fig. 2(c). The accuracy gained by using smaller time 
steps for the fine scale is displayed, as is the fact that there is a limit 
to the accuracy that can be gained. Indeed, using a multirate ap- 
proach affects both accuracy and stability. Consider the case of a 
two-dimensional system (1) with scalar fast y, and slowy2 compo- 
nents. In this case, we can write 

dyx 
= r(yuyi) 

dy2-hvx 

and solving (1) amounts to tracing out a smooth curve with slope 
/i//2 at each point. Using a multirate method for approximating 
the change (yi,y2) -> (yi + &y\,y2 + Ay2) amounts to replacing 
the implicit slope h-(yt + Ay,,y2 + Ay2) at the new point by 
£(y, + Ay,,y2), which has been "frozen" at the previous y2 value. 
Drawing a few examples provides convincing evidence that this 
affects both accuracy and stability regardless of how well we 
approximate the step between (yi,y2) and (yi + Ayi,y2 + Ay2). 

There is a significant literature on multirate numerical methods, 
see for example [48,29,1,45,30,55,56,50,2,37,8,3,33,14,19,18,44, 
15,38,32,5,51,36,40,41,46,11,49,57,42.60,13,58,61,54,52,53,34,10]. 
By and large, these references are focused on application and 
standard a priori analysis issues, e.g. stability, accuracy, and 
convergence properties. Such analysis is not generally useful for 
estimating the error in specific numerical solutions. The main goal 
of this paper is to derive a computable a posteriori error represen- 
tation that accurately estimates the error in a specified quantity of 
interest computed from a multirate solution of (1). 

Our analysis adapts a well developed approach based on dual- 
ity, adjoint operators, and variational analysis, see for example in 
[43,39,22,20,21,26.7,31,4,6]. In order to use a variational frame- 
work for analysis, we represent the numerical method as a finite 
element method. In this paper, we consider the so-called discon- 
tinuous Galerkin (dG) method [16,17,59,22] which employs piece- 
wise polynomial shape functions. We can recover many standard 
finite difference schemes by appropriate choice of quadrature ap- 
plied to the integrals defining the finite element solution. Our anal- 
ysis also applies to the so-called continuous Galerkin (cG) method, 
which yields other families of difference schemes upon application 
of quadrature [24]. 

Our approach is based on the observation that a multirate 
method shares some features of multiscale operator decomposi- 
tion methods for multiscale problems |43,9,27,28,25,23j. In partic- 
ular, the need to project the approximate solutions between the 
discretizations at different scales and the practical use of incom- 
plete iteration when solving the discrete equations has effects on 
accuracy and stability similar to those caused by operator decom- 
position. Indeed, we adapt ideas used in the investigation of oper- 
ator splitting for reaction-diffusion equations [25] to carry out the 
analysis. In particular, we define adjoint operators for both the ori- 
ginal nonlinear operator and the multirate-discretization operator 
independently by linearization with respect to a solution that is as- 
sumed to be common to both operators and obtain analogs of the 
standard Green's formula representing the quantity of interest rel- 
ative to the common solution. We then carry out the a posteriori er- 
ror analysis by comparing the resulting linear expressions. The fact 
that multiscale operator decomposition affects stability is directly 
reflected in the form of the estimate, which involves the difference 
between certain adjoint operators associated with the solution 
operator for the original problem and the multirate - operator 
decomposition solution operator. A practical difficulty with such 
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Fig. 2. Typical simulations of the two scale system. Left: A solution at a fixed time. Center: The components at y, (slow) and y7 (fast) versus time. Right: Plots of pointwise 
accuracy versus the fine scale time step for three coarse scale time steps. 
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estimates is the fact that it is unlikely that the adjoint for the ori- 
ginal problem is available since it poses the same multiscale chal- 
lenge as solving the original forward problem. Therefore, we derive 
an estimate expressed as a computable leading order expression 
obtained using a posteriori arguments with remainder that cannot 
be estimated but which is provably higher order. We call this a hy- 
brid a priori - a posteriori estimate. 

Our analysis shares some aspects of the results in the penetrat- 
ing series of papers [40-42] by Logg. In those papers, he carries out 
an a priori convergence analysis, an a posteriori error analysis, anal- 
yses the convergence of a fixed point scheme for the numerical 
method, and constructs an adaptive time stepping algorithm for 
what is termed multiadaptive cG and dG methods. These methods 
generalize the notion of multirate schemes to allow different time 
steps for each individual component of a system of differential 
equations of size N. 

Our results differ from this work in two significant ways. First, 
Logg does not consider the effects of projecting between the dis- 
cretizations at: different scales on the accuracy of the approxima- 
tion. If projections are not employed, then the quadrature used 
in the finite element formulation should be carried out on the fast- 
est time scale in order to avoid integrating non-smooth discrete 
approximations. However, this greatly increases the expense of a 
multirate scheme. In practice, a projections are introduced in a 
de facto fashion that is rarely arranged on the finest time scale, 
which potentially has a significant effect on accuracy. In any case, 
our analysis provides the means to quantify the effect of the dispa- 
rate time scales in the discretizations on overall accuracy. 

Secondly, Logg does not consider the effect of incomplete itera- 
tion in the solution of the discrete equations. That is, the complete 
convergence of the discrete system equations that must be solved 
at each "synchronization time" is assumed. In practice, it is com- 
mon to carry out only a few or fixed number of iterations (perhaps 
only 1!), and the fewer iterations that are used, the more the dis- 
cretization scheme behaves like an operator decomposition meth- 
od. Our analysis of the effect of incomplete iteration provides the 
means to strike a balance between the discretization and iteration 
errors. 

The rest of the paper is organized as follows. In Section 2, we 
formulate multirate Calerkin finite element methods for (1). We 
present some a priori convergence results in Section 3. The main 
results on the a posteriori analysis of the multirate method are pre- 
sented in Section 4 followed by several numerical examples in Sec- 
tion 5. In Section 6, we give the details of proof of the a priori result. 
Finally, in Section 7, we present a conclusion. 

2. A multirate Calerkin finite element method 

2.1. A fully implicit multirate Calerkin finite method 

We discretize [0,7"] into 0 = t0 <t, < t2< ■■■< tN = T with time 
steps At„ = r„-r„_i, At = maxi<n4N{Atn}, and time intervals 
/„ = {t„-ut„). Let Lj.„. i = 1, 2 be two positive integers, where L,,„ de- 
notes the number of time steps used to solve the fast subsystem 
and L2,n the number of steps used for the slow subsystem. We 
denote time steps for each component in the Galerkin formulation 
by ASf.n = Atn/Li.„. with As, = maxi<n<lv{Asln}. Within /„ we set 
/I./I = (fi-ui.ti.il) with  t,.„ = r„_, +IAS|J,,  for / = 0.1,2 L,.„,  and 
k.n = (tk-i.n,tk.„) with rk.„ = t„_, + fcAs2.„, for k = 0,1,2 L2,„. 

We use an extension of the discontinuous Galerkin method [26], 
which is an appropriate method for dissipative problems. The 
analysis naturally extends to the continuous Galerkin method, 
which is more appropriate for problems with conserved quantities 
[26]. The finite element approximate solutions are sought in piece- 
wise polynomial spaces, 

V<*>(/„) = {V : U|,in € P("'(/,,„), 1 <S / ^ /.,,„}, 

V«>>(7„) = (U : U|,M 6 P"»>(/M), 1 =S k $ L2t„}. 

The multirate Galerkin finite element solution is to find Y = (Y\ Y2)
T 

with Y,|,n e V'^'C,,) and Y2|(> e V"1'(',,) satisfying 

j (Yi - Ft(V,, V2), V)dt+([Y,],_,,„, Vt,)=0,   WeP<*>(A,,). 

(3) 

for (= 1,2 L|.„, and 

/ (V'2-F2(/7V'1,V'2),W)dt+([V'2]l.1„,Wk
+.1)=0, W€?*l(/M), 

(4) 

for fc = 1,2 L2.n. Here 77 is a projection operator between the two 
different meshes. In the simplest case, 77 = 7 implies that the integra- 
tion in (4) is carried out on the finest mesh. As noted in [9] this pro- 
jection can become a significant source of error whenever 
information is transferred between two different discretizations 
and its effects should be estimated separately as a potentially signif- 
icant component of the total error. Eqs. (3) and (4) together comprise 
a system of size 7, „(<j, + 1) + L2,„(g2 

+ 1) which is solved implicitly. 
We note that many standard finite difference schemes can be 

obtained by applying appropriate quadrature formulas to the inte- 
grals defining the finite element approximation. A straightforward 
modification of the analysis below extends the results to such dif- 
ference schemes. 

2.2. An iterative multirate Galerkin finite element method 

Without loss of generality, we assume 7, „ = d„t2.n for some po- 
sitive integer d,„ i.e., L,.„ is divisible by L2,„. The iterative multirate 

Galerkin Finite element is to create a sequence Y(m) = (V/"1 y!,"0) 

with Y?\ g V^'Cn) and Y2"\ e V(,,i!(/„) determined by 
Algorithm 1. 

Algorithm 1: Iterative multirate Galerkin finite element 
method 

for n = 1 to N do 
Sety(0,=V(M„_,,(t-_i) 

for m = 1 to M„ do 

setv(""(tn--,) = y(M-»(tn--i)- 
for/=l to 7,,,„ do 

Compute Y(,m)(f) for re /,.„ satisfying 

| (y<m) - Fi(Y<?\ Y?-\ V)dt + ([Y'rl.jn I'M) = 0,    (5) 

for all V € P(,''(/,.„). 
end for 
for k = 1 to l2„ do 

Compute y<m)(r) satisfying 

| (y2
m) -F2(77y(,m',y<m)),w)dt + ([Y<ffl,]k_,,.wu) = o, 

(6) 

for all W 6 VM(lk.„). 
end for 

end for 
end for 
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3. A priori theory 

Under appropriate assumptions, the solution of (1) exists and is 
unique in [0,T], see [12,47]. An a priori analysis for a multi-adaptive 
Galerkin solution of (3), (4) is provided in [42]. For completeness, 
we present a short a priori convergence analysis that is required 
for the hybrid a posteriori-a priori estimate for the iterative approx- 
imation produced by Algorithm 1. 

3./. An analytic iterative method 

As a tool for analysis, we consider a theoretical approximation 
obtained by iterating analytic solutions of the fast and slow com- 

ponents. Specifically, we let y(m) = fy(,m) y2
m)}   denote the analytic 

approximation of (1) at iteration level m obtained using the itera- 
tive procedure defined in Algorithm 2. 

Algorithm 2: Analytic fixed point iteration 

for n = 1 to N do 
Sety!,1 (0) . ,tf- '(r„- 
for m = 1 to M„ do 

Compute y',m,(0 for t € /„ satisfying 

■F.(yM 
,(m)  „("i-in 

y\m) ■■ 

yy1(t„-,)=y;,"-"(tn_l) „(mi, 
(7) 

Computey^'C) f°r fe 'n satisfying 

yf] = F2(yl?\yW) 

y2   (
ta-\)-y2        ('n-lj- 

end for 
end for 

(8) 

We begin the a priori analysis by analyzing the convergence 
of the method in Algorithm 2 over /„ = [tn_i,t„]. The analysis is 
focused on determining a time interval /„ over which the itera- 
tion converges to the correct solution. For this purpose, we as- 
sume that the solution from previous time level /„_i has been 
obtained exactly, i.e.. y<m)(r„_t)=y(r„-i). Following the classic 
method of successive approximations, we integrate (7) and (8) 
to get 

yim)(t)=y,(tn-.)+/" F,(>>,>»-")&, 

y2
m)(t)=y2(tn.,)+ f Fa(yW,>f)ds, 

•^ tj-t—i 

(9) 

3.2. Convergence of the iterative multirate Galerkin finite element 
method 

We now turn to the a priori error analysis of the numerical solu- 
tion described in Algorithm 1. An unusual feature of this problem is 
the numerical solution involves an alternating sequence of V(

l
m) and 

Y2
m\ which result from consistent numerical discretizations of (7) 

and (8) respectively. The analysis is carried out using the analog 
of the standard local error analysis for a finite difference scheme. 
For each component solution on each interval, we decompose the 
error into a sum of the error in the initial condition inherited from 
the previous component solution and the error of the numerical 
solution of the component assuming exact initial conditions on 
the current interval. We describe the main result below and give 
the detailed proof in Section 6. 

Theorem 3.2. Lety\m) andy[m) be the solution of analytic fixed point 
iteration governed by (7) and (8). respectively, and Y(,ml and Y2

m^ be 
their definite element approximation with /7= the identity. Then the 
finite element error at the fina[ time for q, = 0, / and q2= 0. 1 is 
bounded, and 

p(M„) (tN)t-o(A5?' + ')+o(Asr,)+0(| 

where r2 = maxKn<NIrf^l . and r! (m) 

r2\ 

is the iteration residual writ- 
ten in Lemma 6.3. 

Notice that there is a term quantifying the iteration residual, 
namely r2

m). Provided the sequence of solutions are driven to pro- 
duce small iteration residual relative to the errors produced by the 
finite element solution, then this term is negligible. 

4. A posteriori analysis 

It turns out that is feasible to treat the effects of projecting be- 
tween the discretizations at different scales and the use of finite 
iterations in the iterative solution of the discrete equations sepa- 
rately, and doing so greatly simplifies notation. 

4.1. Analysis for the implicit multirate method 

To define the adjoint, we set z = sy + (1 - s)Y, with s e [0,1 ] and 
then let F(z) be a matrix whose entries are 

fWs 

-1J = F'(z)Ti9] tn>t> t„-, 

Any continuous functions satisfying (9) also satisfies (7) and (8). 
Hence, the goal is to first show that each of the integral equa- 
tions in (9) has a solution for a fixed m. We then proceed to 
show that the iteration solving (9) (and thus (7) and (8)) con- 
verges to the exact solution of (1). Details of this investigation 
are presented in Section 6. The main result is the following 
theorem. On time interval ltn, 1= 1,2 

Theorem 3.1. There exists a time t„ > r„_, such that the sequence of      0 = /   (e>^ + F(z)Ti?J dt 

functions jy1,"1' j and (y^1 j produced by the integral Eq. (9) converge 

to the exact solution of (\) on time interval l„ = /t„_,, tnj. 

Jo oyt 

Consequently, F{y) - F(V) = TÜ^)(y - V). We note that 

-e + Ffzje = (-y + F(y)) + (Y- F(V)) = Y - F(Y). 

Furthermore, using continuity of y, 

ef-l,n —yt-\,n ~ ^/-l,n = (^V(-1 ,n ~~ ^l-l,nj ~~ (^l-l.n ~~ ^l-l,n) 

= e;-1,n ~~ I' ll-l,jr 

Associated with the finite element solution, we denote by i? the gen- 
eralized Green's function that satisfies an adjoint problem 

(10) 

iM.m 

[el„AJ)-{eU„A-yn)+ I {-e + P(z)eAdt. (11) 
•''in 
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Combining all these expressions yields the recursive relation 

(>V) = (cu.*-i,)- / tfr-F(y),w 

Theorem 4.1. The implicit multirate Galerkin finite element solution 
satisfies the error equation over one time step l„: 

{e-,<l/n) = (e-_,,iVi) + Qi,,, + Ö2,n + e„,„ 

where 

"■2.- 

q>(t) = tf„(W„, 

for r„ > t j: t„_, and some initial data \\in. We can obtain a solution 
representation using the Green's functions, by multiplying y with 
the adjoint Eq. (15) and integrating in time, integrating by parts, 

(y„A) = (yn-i.*-.('-.-!)«■ (is) 

4.2.1. Analysis of the analytic fixed point iteration 
To simplify presentation, we express the analytic fixed point 

iteration in Algorithm 2 in a more compact format. In particular, 
for any iteration index m, we write (7) and (8) as 

_y("') = F(y<m))+4""1 

where 

fc-'   v     •" J Thp vprtnr <¥m' nn hp inrprnrpfpH a«: a rpcirln 

(17) 

(18) 

g„,„ = £; /" (F2(y,,y2)-F2(/7y,,y2)^2) dt. 

Furthermore, by setting ij/N = ip for a given tj/ and \j/n_, = i9„_,/orn = N, 
N - 1 2. the error of implicit multirate Galerkin finite element 
method at final time tN = T can be expressed as 

(e-N, <fr) = £(01^. + Ö2,n + ÖH,n) (13) 

The term Qi,„ represents the finite element residual associated 
with the fast: time scale subsystem, while Q2 „ represents the finite 
element residual associated with the slow time scale. The term 
Q,],n represents the effect of projection of yi from the fast to the 
slow time scale. We use Qi,n,Ö2,n>fi;;,n to distinguish these terms 
from the closely related but distinct terms Q, ,„, CL».,,, Chi.n appearing 
in Theorems 4.2, 4.3, and 4.4 below. 

4.2. Analysis for the iterative multirate method 

To simplify notation, we now assume that the projection 77= the 
identity. As discussed above, a key feature of the analysis is the 
realization that the analytic fixed point iteration is naturally asso- 
ciated with a different adjoint operator than the original problem. 
Our approach [25] to overcome this issue is to use a different lin- 
earization than commonly used for nonlinear problems. We as- 
sume that the operators for the original problem and the analytic 
fixed point iteration share a common solution, and use that as a 
linearization point. The simplest example of such a solution is a 
steady-state solution, which can be guaranteed to exist by assum- 
ing homogeneity in the right-hand side, i.e., 

F(0) = 0. 

This is generally not restrictive in practice, but this assumption can 
be generalized (see [25]). We let 

,jW    Jo  dyj 
{sy)ds,    i,7 = 1,2, (14) 

and F denotes the square matrix whose entries are (14). Then 
F(y) = F(y)y and soy = F'(y)y. Associated with this linearized form, 
we denote by cp the generalized Green's function satisfying the fol- 
lowing adjoint problem: 

-£ = f(y)T4»,   te(T,0], 
(p(T) = <l>. 

(15) 

On subinterval /„ = (t„_,,t„), we define the solution operators <P„ 
associated with the Green's function, 

The vector S{™> can be interpreted as a residual at the iteration level 
m. 

To define an adjoint for the analytic fixed point iteration in 
Algorithm 2, we let q>f] denote the generalized Green's function 
that satisfies an adjoint problem on time interval /„ as given in 
Algorithm 3. 

Algorithm 3: Adjoint for the analytic fixed point iteration 

Set <p\0) = *,,„ 
for k = 1 to K„ do 

Compute cp2® satisfying 

-<pf = F22W"*y<pf+rl2(yW)Tcp*-",  tn>t>t„_ 

•At») = ^,n. 
(19) 

Compute q>^ satisfying 

-vV = fufy^VvT + f2,0"m»)T<P2
k\   t„>tz t„_ 

<p(,"(t») = *,„, 

end for 

(20) 

Notice that the adjoint problems are solved backward in time 
and in the reverse order to that of the forward problem, starting 
with <p^! followed by (p\k). These generalized Green's functions 
are an iterative approximation of (15). As in the forward problem, 
we can also rewrite this last algorithm into a compact form 

(21) 

for adjoint iteration level k. Here 

cw=-[o,Füy^)T((pv-'pr))}\ 
is the residual of the adjoint at iteration level k. We also introduce 
the solution operators tfj,10, with <pw(0 = <P^{t)ip„, for t„>fz r„_,. 
To get a representation of the iterative implicit solution, we follow a 
similar derivation as for the forward problem. Multiplying,y(m) with 
(21), integrating each over /„, and applying integration by parts, we 
obtain 

(yw *,) = (yK.tfSftr-i)*.) -J (-y(m»+Fö^)y(m)-<P(k))df 

- f (ylm),i(k))dt. 



Using (17), we obtain the solution representation of the analytic 
iterative implicit method 

W'.*«) = (yj!'„#f)(t..1)*.) +J {^\^)dt-j (/-Kim)dt.     (22) 
We note that this representation is not in the standard format (in 
which the solution at the current time level solely depends on the 
previous time level values). It contains artifacts arising from the 
iterative procedure used to compute both forward and backward 
problems. The second term can be interpreted as the weighted aver- 
age of the forward problem residual over a time step. The third 
term, on the other hand, is the weighted average of the backward 
problem residual over a time step. Thus, the iterative nature of solu- 
tion procedure is reflected in this representation. Once convergence 
is reached both on forward and backward problems, then the stan- 
dard convention of solution representation using the adjoint tech- 
nique is recovered. 

We are now able to express the error representation of the iter- 
ative implicit method. First, we state a lemma concerning an error 
equation over one time step. 
Lemma 4.1. The analytic fixed point iteration satisfies the following 
error equation over one time step: 

(y„ -y„*,*.) = (y„-„A<*f(t,.-.¥„) - J (s™,(pm)dt 

+ j(y<m),cik))dt 

where A*!,1" = «„ - *<lt). 

Proof. This lemma is derived by subtracting (22) from (16) and 
setting y™ =y„_,.   D 

Note that there are terms that are not computable in this 
expression. The term A'pjf' is definitely not computable, though 
when convergence in the adjoint computation is reached, this term 
vanishes. Nevertheless, in the context of finite number of itera- 
tions, we desire to quantify A#J,k|. This is made more precise below. 

4.2.2. Analysis of the iterative multirate Galerkin finite element 
method 

To setup the adjoint, let z<m) = sy"1"' + (1 - s)y<m>, with s e [0.1 ]. 
Then let F'ft1")) be a matrix whose entries are 
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r -a« = F^öjV/o + fJ^jT^i   r„ > t > t„., 

.<>(« = ^,„, 
(24) 

F(Z("0) 
-Jo dy>(z   > 

ds. 

Consequently,    F(yW) - F(V(m)) = F'(zm)(yW - Ylm)).    Associated 

with the finite element solution, we denote by i9w = [i)(,lr)i>j,l')l  , a 

sequence of generalized Green's function that satisfies an adjoint 
problem 

Algorithm 4: Adjoint for the iterative multirate Galerkin 
finite element method 

Set tf<°> = ^,„ 
for k = 1 to K„ do 

Compute tf^' satisfying 

\ -,j<k> = Fl
72(zM)^f + Fl2(z<"'))T<-",    t„>t> r„_, 

Compute i?'/0 satisfying 

(23) 

end for 

As was the case in the adjoint formulation associated with ana- 
lytic fixed point iteration, this algorithm can be expressed as a 
compact form 

-i^F'fzM)'^»+ »;<", 

where 

(25) 

T - [ofjzw-y (<>-<-")]T, 
is the residual of the adjoint at iteration level k. 

At this stage, we are in position to derive an error equation asso- 
ciated with the numerical discretization of the analytic fixed point 
iteration. Let e

lm)=ytm) - V*"". On time interval /,„,/= 1,2 L,.n, 

0 = j (e<m),i3(lt) + fJ^]T^k) + //*)) dt 

+ [ (-e(m)+F7(z<;^e(m>,i?('c)W + f (e(m),Jj|V))dt.        (26) 
An   V ' An 

We note that 

_e'm' + F'(z<m>)e(m) = (-y,m) +f(y(m))) + (y(m> - f(y(m1)) 

Furthermore, using continuity of y(m\ 

„("0+ _ ,,(m)+ _ yl"<)+ _ (^m)~ _ y(m)-\ _ (y(m)+ _ y("')-"\ 
c/-l,n — Jl-I.n       'l-l,n — ^-M-l.n t-\,n)        \'l-h" l-hn) 

— p<m'- _ (v<m'1 
'-'•"    I     J I-,,»' 

Inserting these expressions into (26) yields the recursive relation 

An 

•''pi 

- / (eW,riM)dt. (27) 
An 

This is the basis for the equation for the error at time t„ stated in the 
following lemma. 

Lemma 4.2. The iterative multirate finite element method satisfies an 
error equation over one time step: 

(e^*.) = («S3T.«2,)+<li, + Q*, 

1=1    A» 1=1    An 

w/iere 

and 4m) is defined analogously to 6{™]. 
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Proof. This is obtained by using the recursive relation (27).   D 

We note that this equation reflects the error arising from the 
consistent finite element numerical discretization of the analytical 
fixed point iteration. Similar to Lemma 4.1, this error contains the 
iteration residuals weighted by the adjoint i9(k). The last term is not 
computable since it contains the error e(m) weighted by the itera- 
tion residual in the adjoint computation. Again provided that an 
a priori estimate on e(m> is available, we can bound this term as 
higher order due the fact that the residual can be made as small 
as needed when the adjoint computation is driven to convergence. 

We now collect all the resulting estimates and obtain an error 
estimate of the finite element multiscale iterative implicit method 
by setting y - V""1 = {y - y(m)) + (y(m' - V<m)). 

Theorem 4.2. Set \jiN = \j/ and i/r„_, = d[^\ for n~N, N-l 2. 
Then the error of iterative mukirate Galerkin finite element method at 
final time tN = T can be expressed as 

(yN - C*1'. *) = £(Q,,„ + Q2,„ + Q3,„ + a,,» + Qs,n+Q6,„), 
n=1 

(28) 

Qi „ and Q2,„ are given in Lemma 4.2 with m replaced by M„ and k re- 
placed by K„, and 

W    An   V ' 

1=1    •''in 

Q5,„ = (y|,Mf,AeV„)+/n(y(M"),c"("))dr 

■Qe,n = (y„-, -yflUeV») - E / (e(M"W«»>R 
1=1    A« 

Proof. Denote e(m> =y - Y(m). First we need to get the total error 
over one time step. We sety^', =y„-, in Lemma 4.2 and combine 
it with Lemma 4.1 to get 

KM"'",^) = (*H,<?„-",) +Q,,n+Q2,n + Q3,n + Q4,n 

+ (yn.u^f")^)+l(y(M"),iiK"))dt 
k»   t 

"E /  (e'""',^"'),^- (29) 
1=1    An 

We note that since y*j'~ = Yi„M_]-')' (see Algorithm 1), we have 
„(«.)- _„(M«-l)- Furthermore,    by    adding    and    subtracting 

(Ä',A*f'V„).weget 

(yn-,.aeV„) +J (y"-',«"'-')*-^ jf" (e'M»',^»)dt=Q5,„+Q6,„. 

Combining all this expressions in (29) yield a recursive relation for 
the total error over one time step. The error at the final time is ob- 
tained from undoing this relation.   D 

Theorem 4.2 has decomposed the total error at the final time 
into several components. The term Q, „ represents the finite ele- 
ment residual associated with the fast time scale subsystem, while 
Q2.,i represents the finite element residual associated with the slow 
time scale. The term (h„ represents the iteration error quantified 
by the iteration residual i1""'. It is expected that once convergence 
is reached this component should vanish. The term Q.4,n also con- 

tains the iteration residual, so when convergence is reached, this 
component vanishes as well. Moreover, we note that in this term, 
the iteration residual is weighted by I?'*"' - <p<K"K Recall that the 
adjoints 1? and tp differ in the functions which are used for linear- 
ization. Thus, the term Q,t„ also vanishes when tf(k) = <p(k>, which 
may be true if, for example, the system (1) is linearly coupled, 
i.e, if F,(yi,y2) = AO'i + Aay2 for some matrix A,-, and A,2. 

The term Q5.n and QB„ contains A<fJfVn which is not comput- 
able. As has been mentioned, provided an a priori estimate regard- 
ing the error of y and Y is available, Qs„ is of higher order in the 
asymptotic limit. All these issues are addressed in the next section. 

4.2.3. A computable error estimate 
The following lemma shows that if the analytic fixed point iter- 

ation has small residual, then A0f,kVn can be written as a sum of 
the residuals of the adjoint iterations and some higher order terms. 

Lemma 4.3. IfF is Lipschitz continuous andy'M"' is sufficiently close 
to y in In, 

A*j,*"Vn = - / c'*""1 dr + h.o.t. 

Proof. We denote by dp function that satisfy 

-q> = F'(y^)T(p,    te (r„,rn_,), 

. v>(tn) = «/v 
(30) 

Using this equation we write <p - tp^K') = (tp - (p) + (<p - ^pt*»)) = 
A + B, where A satisfies 

i-A = f (y("»))A + \f{y) - F'(y(M"))j q>,   t e (r„, r„_,) 

W„)=0. 
Using a standard technique for system of ordinary differential equa- 
tions, we get 

Mt) = J" pÖÖ - f (y(M">)] (Pdr + o(Atl\Fly) - f (y(M-))|). 

If F is Lipschitz continuous, 

\A(t)\<ZCAt„\y-y^\\cp\, 

and thus, when y(M»> is sufficiently close to y in /„, A(t) is of higher 
order. Using (21), ß satisfies 

l-B = F(y(^)B-e°)   t € (t„,t„.,), 
\ß(tn)=0, 

with solution expressed in similar fashion as A[t), 

B(t) = -['°c^dT + 0(i^Atl). 

Computing B(t„_!) completes the proof.   D 

Once this is in place, we may verify that £"=i°-5,n anci En-iQe.n 
are of higher order. These are stated in the following lemma. 

Lemma 4.4. When c(/c,) and rf°> are sufficiently small, the terms 
En-iQs,™ and EÜLIQM are of higher order. 

Proof. Using Lemma 4.3 we get 

a5,n = /n(y(M"»-yS,,ci"(»')dt + h.o.t. 

Since |y<M~) -yf_\]\ s= CAt„,Q5„ « O^-'A^) which for sufficiently 
small ^,K") makes X!n=iQ5,n a higher order term. Similarly, for 
sufficiently small {<""> and r]^"\ £*_, Qe.n is also a higher order term, 
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because both these residuals are weighted by the numerical solu- 
tion errors.   D 

Based on Theorem 4.2 and incorporating the two lemmas above, 
we may now write a computable error estimator for the iterative 
multirate Galerkin finite element method. 

Theorem 4.3. The computable error of iterative multirate Galerkin 
finite element method affinal time tN = T is 

(yN-yfv
MN|-,1A)«Q1+Q2 + Q3+Q4 

N 

= £(Ql,n + Q2,„ + Q3,n + Q4,n), 
n=l 

where 

Q.---£{j[i(^-Fi(c\vir'-,o.^,o*+(Mwv<yM') 

1.1 ''m 

Remark4.1. Notice that Q4,, contains ^M"' which is an expression 
that is dependent any'M«', the analytic fixed point iteration solu- 
tion of (1). By adding and subtracting ö{™") to Q4 „ we get 

1=1     A.n 

1=1     An 

The second term in the last equation is higher order because it in- 
volves the difference between two residuals. 

4.3. A computable error estimate including projection 

Relaxing our assumption in Section 4.2 and allowing for a pro- 
jection other than the identity, we may write a computable error 
estimate for the iterative multirate Galerkin finite element method 
including projection. 
Theorem 4.4. The computable error of iterative multirate Galerkin 
finite element method including projection at final time tN = T is 

(yN - C"'~. *) * Q. + <h + Q3 + Q4 + Q„ 
N 

= £(Ql,n + Q.2.n + Qs.n + 04,n + Q;,,„), (33) 
where n=1 

Q..»=-§{{ (*r-' -F> (c.nM"-,,)."(,M)dt+(h"",](.,v<-..«)}' 

Q**—iff/i(*^l-f>(,7ir,.»f,)).»?,,)dt+([v?,,l1v^-,.J} 

Q4.n=E/ (4M",,^",-P(K"')dt 

i-i A» 

Q».»=E /   (F2(Y^\Yf-')-F2(nY(r"\Y^),^)dt. 
1 = 1    J't n 

5. Numerical experiments 

In this section, we present several numerical examples that 
show the performance of the error estimates. All forward problems 
are solved using the lowest order, piecewise constant dG method, 
which is equivalent to backward Euler scheme. In particular, for 
iteration level m, the scheme is 

*5S - C, = ^F,OCv&"). i=1.2 t,,„ 

(3D   I nt-c^^E^^vnt), 
,k=1,2,...,L2,„,   (, = (k-l)d„+/ 

When nonlinear, the individual component equations are solved 
using Newton's Method. The adjoint solutions are computed using 
a second order, piecewise linear, Continuous Galerkin method, 
which is equivalent to the second order Crank-Nicolson scheme. 

In order to illuminate the behavior of the error, we take the 
quantity of interest to be the individual error in each component 
at the final time. We point out that the choice of the quantity of 
interest has a significant impact on the behavior of the error in 
general [26,23]. This is even more significant in a multiscale 
problem. 

We demonstrate the robustness of the proposed error estimator 
through several examples below. These examples also show the 
potential for using an accurate estimate to adaptively determine 
the parameters controlling accuracy. Since the error estimate is 
written as a sum of contributing components, we can determine 
the largest source of error and adjust the corresponding parameter. 

In the first example in Section 5.1. we illustrate the conse- 
quences of projections between scales. The rest of the examples 
illustrate the consequences of incomplete iterations, and in those 
examples we assume 11 = the identity. 

5. /. Numerical example illustrating discretization and projection error 

To illustrate the performance of the error estimator provided by 
Theorem 4.1 (fully implicit multirate Galerkin finite element meth- 
od), we consider the numerical solution of a 3 x 3 system 

yfO) = -S22L 
*\u>      10001 

10001 

'*= 100y + z, 

y = -100x,   y(0): 

z=-T^((10001x + r)2-i-(l0001y+l00z)2),   z(0) = 1000, 

(34) 

which has fast and slow equations coupled nonlinearly. In particu- 
lar, the equation determining z(r) contains nonlinear coupling to the 
fast   scale   components   x(t)   and  y(r).  The   true   solution   is 

x(r) = cos(100t)-Se"r. y(t) = -sin(1000-I^Tc-'. and z(t) = 
lOOOe"'. There are two distinct time scales, fast O(27i/100) and slow 

0(1). We set y, = [x y]T (associated with the fast time scale) and 
y2-2 (associated with the slow time scale). A typical solution is 
depicted in Fig. 3. 

The multirate finite element solution is constructed on the 
piecewise constant finite element space, i.e., with (ji = q2 = 0. The 
system is solved until 1=0.5. We use At = 0.5/10, As, = At/800, 
and As2 = Af/10 and examine three different projections; (i) /7,: 
the identity operator, (ii) n2: averaging over (tfc_i.n.tfc,n) (i.e., over 
a subinterval of length As2), and (iii) 773: averaging over (t„_i,r„). 
Fig. 4 compares the exact errors of the multirate solutions when 
solved employing these three different projections. As expected, 
the multirate solutions exhibit the best performance when the 
identity operator is used. In all subsequent examples we shall as- 
sume that the projection is the identity operator and thus QJI = 0. 
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Fig. 3. Typical solution of (34). 

Time 

2.0 

Ä  1.5 

g   1.0   - 

0.5 

0.0 

'        ■        ■   1  
1 / 

- 1 
1 
1 
1 

l\/ . 1 
1 

■ 1 
/V                                .'.   / 

- / •%     JY   J" 

/ iv f\l V 
1 .    /Y / \j   " 

1 »H.y\/ ",        ■ 
0.0      0.1      0.2     0.3      0.4      0.5 

Time 
0.4      0.5 

Fig. 4. Comparison of exact errors for multirate solution of (34) with various projection. /7, 
over /„ (dashed lines). 

identity (solid lines), n2: local average over lkM (dotted lines), and [1,: average 

Table 1 
Performance of error estimator at 7»0.5 for 77,. the identity operator. 

Table 2 
Performance of error estimator at T- 0.5 for n2, averaging over /„„. 

Error for x(t) Error for y(t) Error for Ä.C) Error for x(r) Error for y(r) Error for z[t) 

Exact error 0.124 0.569 -48.92 Exact error 0.126 0.665 -57.31 
Error estimate 0.126 0.535 -46.11 Error estimate 0.128 0.541 -46.81 

Qi 0.123 0.500 -43.63 fli 0.123 0.499 -43.66 
Qi 0.003 0.035 -2.48 S2 -0.014 -0.144 10.79 
Qn 0 0 0 a» 0.019 0.186 -13.94 

Tables 1-3 show the performance of error estimator when solv- 
ing the system employing the three different projections. As ex- 
pected, the estimator performs reasonably well when /7, and n2, 
the identity and local averaging operators respectively, are used 
and it breaks down when /73, the averaging operator over /„, is 
used. Nevertheless, the estimator still gives a hint of what is actu- 
ally happening in terms of the relative size of the projection error 
Qu compared to the total estimated error for all three components. 

5.2. A one-way system with the fast variables coupled into the slow 
equation 

We consider the 3 x 3 system 

' x = -50y, x(0) = 1 
y = 50x, y(0) = 0 

^z = -z + x+y,   z(0) = 2, 

(35) 

in which the fast variables are coupled into the equation for the 
slow subsystem. The true solution is x[t) = cos(50t), y[t) = sin(50t), 

and z(f) = gS}e-'--aIcos(50t)+-8-sin(500. We sety, = [xy]T 

Table 3 
Performance of error estimator at T- 0.5 for /73, averaging over /„. 

Error for x(t) Error for y(t) Error for z(t) 

Exact error 
Error estimate 

Ci 
Qi 

0.161 
0.194 

0.111 
0.004 
0.079 

3.775 
0.970 

0.540 
0.018 
0.412 

-370.03 
-87.64 

-48.63 
-1.64 
-37.37 

(associated with the fast time scale) and y2 = z (associated with 
the slow time scale). Since the coupling is one way, there is no iter- 
ation needed when solving the system, i.e. we solve for yt and use 
the solution to solve fory2- The same holds for the associated ad- 
joint computation. Thus, the error arises solely from the numerical 
solution of the fast and slow subsystems. Note however that the 
numerical error of the fast component affects the accuracy of the 
slow component. We plot the typical behavior of the error in 
Fig. 5. The accuracy of the method deteriorates for longer times, 
however the estimator can accurately predict the error dynamics. 
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Fig. 5. Time history of the error for solving (35). Left: x(t). Right: z(r). The time steps At» 0.05, As, = Ar/128, As2 = At. 
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Fig. 6. Error for component z(f) in (35) at T= 1 plotted against As2. 

Only the terms Q{ and Cb contribute to the error estimate (31), 
and in fact, the error is dominated by the finite element residual 
from the fast scale Q.,. Fig. 6 shows the error in component z(t) at 
the final time T=l when the system is solved using At =0.05, 
AS| = At/128, and decreasing As2. The slow scale finite element 
residual Qj decreases linearly as As2 decreases. On the other hand, 
the fast scale finite element residual Q, does not exhibit significant 
change. Apparently, decreasing As2 yields improved accuracy only 
until a certain stage, after which the error is dominated by the fast 
scale residual. In terms of adaptivity, this example emphasizes the 
potential of the error estimator to provide criteria for time step 
refinement specific to the dominant error component. 

5.3. A system with a slow variable coupled into the fast equations 

Next, we consider the 3 x 3 system 

rx=iooy+z, x(0) = ßBr 

y = -ioo*,    y(0) = $n 
[z=-z, 2(0) = 1000, 

(36) 

in which the slow variable enters into the fast equations. In fact, this 
system has the same solution as (34) in Section 5.1. As in that sub- 
section, we set yi = [xy]T and y2 =z. Because the slow scale equa- 
tion does not involve the fast scale variables, two iterations are 
sufficient to reduce the iteration error. Also, the slow scale finite 
element residual component of the error Q, is zero for component 
y2. For all components, the iteration residual component Ch is zero 
because the adjoints <p and i5 are equal, which is a consequence of 
the fact that ^ is a constant independent of the solution. 

Fig. 7 shows the error components in the fast scale components 
x(t) and y{t) as a function of the fast time step AS]. Here (36) is 
solved until T = 2 with At = 0.2 and As2 = At/20. The method uses 
only one iteration in each of the coarse time steps At. The slow 
scale component z(t) has been solved accurately with error about 
0.5%. Moreover, the difference between estimated and exact errors 
is about 0.08%. As shown in the figure, the error estimator gives an 
accurate prediction despite the inaccuracy of the method. Each 
component exhibits a different error behavior in terms of the dom- 
inant component. For component x[t), the dominant component is 
0_j, i.e. the iteration error. Obviously decreasing As, does not help 
improving the method's accuracy. The fast scale finite element 
residual Q.t does seem to decrease linearly with respect to A s,. 
By contrast, the error in component y(t) is dominated by Oj, and 
thus decreasing Asi would result in smaller Qj and hence reducing 
the error for this component. Moreover, when Asi is sufficiently 
small, the contribution of error from all components becomes rel- 
atively comparable. 

Fig. 8 shows the error components in the fast scale components 
x(t) and y(t) when two iterations are used to solve the system. In 
this case, the iteration error component Oj is essentially zero and 
the dominant component is Q_, for both x(r) and y(t). As Asi is de- 
creased, this term decreases as does the total error. Both compo- 
nents exhibit similar behavior and the error estimator predicts 
the exact error accurately. 

c      1 

10' 

10"J 

,^k Exact 
O Estimate 
D Q, 

Ö Ö 0 6   0 6 8 ft 
8 

.$  Q3 

a a a ■ 

* * ft 9   * * * * 
■ D ■ 

D 

10       2 5     10       2 5     10       2 5     10       2 
As, 

-   IO"1 

10    ■ 

10" 

.A" Exact 
0 Estimate 

^ 6 O o a 
G Q, a 

.0 QJ e 8 o ■ 
D o 
0 * o 0 0 0 
* * * * * * *   * 

■ 

 > 
10       2 5     10       2 5     10       2 5     10       2 

As, 

Fig. 7. Error for components x(f) and y(t) in (36) at T- 2. Solutions are obtained using one iteration. 
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Fig. 9. Error for components y,(r) and y2(r) at T - 1 in (37) as a function of number of iterations. 

Fig. 10. Time history of error in x for solving (34). Left: At-0.05, As, -At/1600, As2 - At/32. Right: At-0.00625. As, ■= At/200, As2 - At/4. 

5.4. A nonlinearly coupled system with one scale 

We consider 

\k = & +e» -2,      y,(0) = -1, 
Ly = -C' -e*» +2,   y2(0) = 1. 

(37) 

The exact solution is y,(r) = ln((e - l)t+ 1) - ln((e - l)t + e). and 
y2(t) = —yi(r). This system is not multiscaled, however the two equa- 
tions are coupled in nonlinear fashion and we can investigate the 
behavior of the error as the iterations increase. Fig. 9 shows the 
behavior of the error over (0,1) with At" 1, and As, = As2 = Af/4. 
At the first iteration, all error components are relatively comparable 
to each other. As the iterations increase, the components Q3 and Qt 
are reduced. However, the overall error fails to continue to improve 
significantly as the iterations increase because the error is eventually 

dominated by the finite element residuals Q, and Qj. We can see also 
that in each iteration the error estimator is in good agreement with 
the exact error. 

5.5. A nonlinearly coupled multiscale system 

Next, we reconsider the 3x3 system in (34) described in Sec- 
tion 5.1. Figs. 10-12 shows the time history of the error for the 
three components. The system is solved until T=2. The plots on 
the left are for At = 0.05 and on the right for At = 0.00625. We 
maintain the absolute size of the other time steps, resulting in 
As, =0.05/1600 for the left column plots, and As, =0.00625/200 
for the right columns plots. The error in all plots are shown for 
the solutions obtained after convergence is reached. It requires 5 
iterations to reach convergence for the solution with At = 0.05 
(lefthand plots), and only 2 iterations for the solution with 
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Fig. 12. Time history of error in z for solving (34). Left: At-0.05. As, -Ar/1600. A 52 - Ar/32. Right: Ar-0.00625. As, - Ar/200. As2 - At/4. 

Af = 0.00625 (righthand plots). The dominant error is always the 
fast scale finite element residual Q,. The estimator predicts the er- 
ror with =2% difference for x(t). and =11% for y(t) and z{t). 

5.6. A two-scale system of wire suspended masses 

We return to the two-scale version of the mass-wire system (2) 
described in the introduction. We set M=10, m = 0.1, A = 0.25, 
a = 0.1, and r = y = 0. 

Fig. 13-16 show the time history of the error of three compo- 
nents of the solution, the slow component/heavy mass at location 
x,, the light mass at x3 [the so-called "bridge" mass) that is con- 
nected to a heavy mass on one side and a light mass on the other, 
and the fast component/light mass at location x7. Even when the 
error is very large, the error estimate gives an accurate picture of 
the error. The figures also indicate the dominant component in 
each case. For example, when only one iteration is used, the itera- 
tion error is dominant, while when three iterations is used, the fi- 
nite element residual is the dominating component. 

6. Details of the a priori analysis 

6.1. Convergence of the analytic fixed point iteration 

As with the standard local analysis for ordinary differential 
equations, the solution of (9) is sought in a neighborhood of the ini- 
tial conditiony(t„_i). Because Fe C'(£), it is locally Upschitz in £. In 
particular, for y(tn_,)e£, there exists an e neighborhood 
ße(y(fn-i)) in E and a positive constant C such that 
|F(u) - F(v)\ $ C\u - v\, for all u and v in Bc(y(r„_,)). In addition, 
with b = e/2, the function F is continuous and bounded with bound 
M in the compact set B = {u e R2, such that \u -y(r„_i)l < b}. We 
claim that the solution of (9) is unique in B. It is obvious that the 

argument employed to achieve this is exactly the same for each 
integral equation because for fixed m, each integral equation is 
solved independently of each other. The following lemma can be 
applied appropriately to each of the integral equations in (9). 

Lemma 6.1. Assume that (a, ß) s B. Then the integral equation 

c(t) = a+/' Fi{t,fids, (38) 

admits a unique solution with (<;, /?) e B. 

Proof. Part of the proof closely follows standard arguments for 
existence and uniqueness (see [47]). We set c(0) = a and compute 

iwit)=X+f  Fi(r5-,,,/j)ds, (39) 

forj = 1,2 For>= 1, this gives |<;(,)(f) - x| $ M(t-t„^) < MAt„. 
Then by choosing Ar„ < b/M (and thus t„ < rn_, + b/M) we have 
{im,ß)e~B. By induction. (cw,/?)€ß. We proceed to show that 
the sequence {<jü)} converges an element of B. Using the Upschitz 
condition, |«(1)(t) - £(D)| < (t - f„-i)M and induction gives 

l«w(t) • tll-i) Ml «£^«4W. C     j\        c 

for j > 2. As long as Ar„£ < 1, we know that for / > k > N 

r to ^WKErt-^wi^S- 
By choosing At„ < min{b/M, \/C},\iw{t) - i(k)(t)| vanishes as 
fV -♦ oo. This implies that £ü)(r) is a Cauchy sequence of continuous 
functions in /„ = [tn_,,t„] which converges uniformly to an element 
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Fig. 15. Time history of error for solving (2) using one iteration. Left: M, (slow). Middle: m3 ("bridge"). Right: m^ (fast). Time steps: At = 0.02, As, = At/32, As2 -At/8. 
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in C(/„). We pass to the limit in (39), so that this limit satisfies (38). 
The uniqueness of this limit is established by contradiction using 
At„£<1.   D 

Now we can use this lemma to prove Theorem 3.1. 

Proof of Theorem 3.1. As in Algorithm 2, y(,0) =y,(fr)_1) and 
y(°] =y2(tn~\)- We choose At„ < min{b/M, l/£}, where all the 
constants are as in the paragraph preceeding Lemma 6.1. The 
existence of the sequences are established by repeated application 
of Lemma 6.1. Form = 1, we designate a =yi(tn_i) and ß-y2°\ Then 
by Lemma 6.1, the integral equation govemingy',1' admits a unique 

solutionwith(y(
1
11,y2

0)) e B. Similarly, with a = y2(r„_i) and/? = y(,1), 

Lemma 6.1 guarantees thaty2'' is unique with (y',1'^1') e #■ We 

can repeatedly apply this lemma and use induction argument to 

show that the sequences (y\m\y2
m^j eß. Our next task is to 

establish the convergence of the sequences. Note that 

|y2"(t) -y?](t)\ = 1)4"W -y2(tn-.)| ^ M(t -1„.,) ^ MAt„. 

Then by adding and subtracting Fi (y^.y^') and applying the 
Lipschitz condition for F 

\y?\t)-y\"(t)\$£ (|F,(^,,y2
,,)-F'(^,,-^,))l 

+ h(y,,,,^))-F,(y<;>y™)|)ds 

< c L ,/i2' (s)-y\"(s)\ds+^ MC{t^t„^f. 

Setting T„ = £Ar„exp(£At„), we apply a Gronwall's inequality to 
obtain. 

|y,2'(0 -y'/'Wl ^ \MC(t - r„_,)2 exP(£At„) « ^^ 

Similarly. 

M \vW(t) - v' '(f) < — r 

By induction. 

yf'tO- y,m-"(0 ^ C„Tn
m   and y2

m>(r) -34"""(t) C C„T: 

where C„ = .M/(£exp(£Ar„)). As long as t„ < 1, we know that for 
/>fc>N 

|y?(0 -y^(t)| < E (y'rw-y,-''^)! 

^£|yr)w-yr,,(0hr4- 
In other words, enforcing T„ < 1 insures that y,n)(t) is a Cauchy se- 
quence of continuous function that converges uniformly to an ele- 
ment in 0(/„). This is also true fory2

m). We pass to the limit in (9), 
so that this limit satisfies (1) in /„. Uniqueness is again established 
by contradiction.   D 

6.2. Convergence analysis for the iterative multirate Galerkin finite 
element method 

The errors are denoted by e\m) = yjm) - Y\m) for i = 1,2. It is obvi- 
ous from the description of the method that the finite element solu- 
tion Yim) is a consistent numerical discretization of the differential 
equations governing y{m\ Thus intuitively we expect that the error 
resulting from this discretization can be bounded by some power of 

the time steps As,,n. Standard analysis of time discontinuous finite 
element for solving system of ordinary differential equations have 
been performed by many authors, see for example [16,17,35.22]. 
In general, one initiates a local analysis within a time sub-interval 
under the assumption that the initial condition in this interval is ex- 
act. Then some form of recursive formulae is derived which is used 

. to accumulate the contribution from each time sub-interval to yield 
an error estimate at the final time. 

Similar arguments can be employed to bound the errors of Y^ 
and Y2

m) separately. However, there are complications that need to 
be addressed appropriately. Firstly, one or both of the differential 
equations may be solved by lagging one component an iterate be- 
hind the current one, e.g. in Algorithms 1 and 2, we have chosen to 
lag V,2"'~,). Secondly, the dependence of function Fon both v'"1' and 
Y2

m) dictates that the accuracy of one component affects the other. 
This is reflected in the following two lemmas. Lemma 6.2 com- 

pares the numerical solution of component Y[
2
m) in time interval /„ 

with a similar finite element solution with exact initial condition 
at t„_, (i.e., it is equal toy2

m)(r„_,)). As expected, this comparison 
depends upon both the error in the initial condition at r„_, and 
on the error in the approximation Y\m). Accumulation of local error 
in each /M with k = 1 l2n gives the quantification of accuracy of 
component Y[m). Furthermore, with slight modification of the proof 
to take account of the fact that the approximate solution Y2 is 
known at the previous, rather than the current iteration (at 
m - 1 rather than m), a similar estimate is also true for Y\m) which 
we state in Lemma 6.3. In what follows, we set |u|,|n = supre, |u(t)|, 
and similarly for /„. 

Lemma 6.2. Let Z e V(l'')(/„) satisfy 

f  (Z-F2(y<"",z),W)dt + ((Z]k_h„,WJ.,) = 0 (40) 

forallW eP^\h„), k = 1,2,...,L2„, andz(tB„) =y,"')(r„-,). With 
<p = Z-Y?\        ' K  '' 

O0exp(24£At„)   e<m)(r„\,)   + 
|2 , 5£Af„i (m)|J 0' 

for sufficiently small As2.n, where |e,m)|,n = maxi<4<[2ll j|e!m,|,  \. 

Proof. We know that for 0 e ^'('M) 
witn °2 = 0, 1, 

!<„ = ^{W-.Xl^n!2} * W-./ + l^,„|2- (41) 
Subtracting (6) from (40) gives 

j   (4> + F2{Y^,Y2
m)) -F2(y',m),z),w)dt+ ([^..„.WjL,) = 0 

(42) 

for every W e P"2,('t,n)- witn W= # in (42) and using the Lipschitz 
condition of F, we find that 

\\4-lf+\\4>tJ ^ jf   (3|0|2 + |e<m»|2)dt 

+ l<WT-l,nll<tf-1,nh (43) 

This in turn gives 

l<fc|2 < \4i-i/ +cjt   (m
7 + leTl2) dt. (44) 

Using W = (t - rt_i,„)0 in (42) and estimating yield 

1AS
2
>|

2
 ^ £2|   (\<f>\2 + |e<m)|2)(t- tt.u)dt 

! f (t-tt_,,„)dt, l.-,, 
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from which we get 

■''k.n   V 
l2 + K"'   )A. 

/or a// VE?*'»(U /= 1,2,...,L,,„. and x(r0n) = ^"\t^). With 
c=X-V(,m), 

lC < 10exp(24CAt„)(|e1(t-.1)|
2 5£At„, m+- ) Because /,   \<j>\2dt ^ 2As2,n|0t„|

2 -I-§As|„|0|ftn. combining this with 
the last inequality yields 

for    sufficiently    small    As,„,    where    r*"> = (y2
m) -y2

m-")- 
M-3(2£As2,n)

2Jj|   |^|2dt^2As2,n|^„|2+|(2/;As2|n)
2jf   |ef> | dt.        |yM _ y(m-i)\ 

Provided that  (l -§(2£As2„)2l > 2/3 (which is equivalent to       Proof. This   is   obtained   using   the   same   argument   as   in 
, ,-,„.     ,2     , ,,,, Lemma 6.2.   D having (2£As2,„)   < 1/2), we get 

The two lemmas above are true for any iteration m within a 
time interval /„. Not only is it apparent that the accuracy of one 
component affects the other, but as stated in Lemma 6.3, the error 

(45) also depends upon the accuracy of the previous iteration. Thus, in 
addition to the numerical discretization, the iteration residuals 
would also influence the accuracy of the overall solution. The .fol- 
lowing lemma states this fact about the error e(m) = [e(,m) e2

m)l . 

J |0|2dt<3As2,„|^J2 + (2£As2,,,)2jf  |e(,m)|2dt 

OAs2,„|^„|2+ljf  |eSmfdt. 

Substitution of (45) to (44) gives 

I<*MI
2
 < |0k--,J

2 + 9£As2,n|^„|2+|^  |e(,m»|2dt. 

Provided that 1 - 9£As2,n > 1/10 (which is equivalent to having      so'ut,ons Qf iteration >evel m over time interval'» saf,'^es 

|e(m)(t")|2 < exp(CAfn)(|e<m>(t-_,)|2 + At^CAs2^" +C2As2;„'!+,)) 

Lemma 6.4. For sufficiently small At„, the error of the finite element 

£As2,„ < 1/10), then this last inequality yields 

\<p(rk,n)\2 $ exp(24£As2,„) (|0(tk-.,,„)|2 +y J  |e(rf dt 

We can now undo the recursive relation to get 

l*(<S,n)|
2 < exP(24^S2,„) f|e2""(t-_,)|2 + ^ £ /  Ie'mfdt 

(46) 

for k = l,2,...,t2]„. Furthermore, using (41) in (43) and estimating 
we get 

i2> 

•lk«4MW|' + 2£/    (31*1  +K :Jt   (3|0|2 + |erf)dt, 

which gives 

(1 - 6£As2,n)M
2
r ^ 4|^-_lp„|2 + 2£ f |e'm)|2dt, 

and thus 

=SU 10|^,,n|
2+5£^  |e<m»|2dt, 

Using (46) with k = k - 1 in the last inequality, we get 

\<p\l < 10exp(24£(fc- \)As2J\ef\t^)\2 +^£ / H""f*) 

+ 5£ /  leffdt 

<10exp(24£(k-l)As2,„)^|e2
m)fc1)|

2+T£J( l^f*) 

< 10exp(24£At„)(|e2
m>(t;_,)|2 + ^|e<.m)Q      O 

Lemma 6.3. LerX e V"'>(/..) satisfy 

/  (* - Fi (Xfy2
m-"), V) dt + (!X],_,,„, Vt,) = 0 (47) 

+ C3Ar, ■K)- 
Proof. Given the finite element solutions V(,m) and V2

m) over time 
interval /„. we use X and Z in Lemmas 6.2 and 6.3, to write 

e<m, = (y(
l
m)-x)+c   and   e<m> = (y'"" - z) + 0, 

where c and </> are as in those two lemmas. Moreover, it has been 
established ([17,35,22)) that 

|y<m) - x|   ^ CAt„As?;;'   and   |y<m> - x|   ^ CAtnAs^„+1. 

Using Lemmas 6.2 and 6.3, we get 

2 . 5£At.i ,m)|2 
2    r2 l/„ 

|e<m,|( + |e2""|( « CAt2As25'+,) + C At2As2^+" 

+ 10exp(24£At„)(|e,
1
m)(t„--1)| 

+ ^|4m'Q + 10exp(24£At„) 

Arguing as in Lemma 6.2, for sufficiently small A t„, there are con- 
stants C, C,, C2, and C3 such that 

le'mt+le2mlC<exp(cAt")(|e,m,(t"-')12 

+ At2 (C, <"+" + C2AS2,^+") + C3At„|r2|
2

n). 

Because |e<m>(r~)|2 ^ |e(
1
m)| + leH , this last inequality gives the 

desired estimate.   G 

Finally, we have the proof of Theorem 3.2. 

Proof. Lemma 6.4 in Section 6 is a recursive relation for the error 
within time interval /„. With rn=M„, this recursive relation is 
unwound to obtain the error estimate at the final time tN = T.   D 
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7. Summary 

In this paper, we carry out an a priori analysis and derive a hy- 
brid a posteriori - a priori error estimate for a multirate numerical 
method for an ordinary differential equation that presents signifi- 
cantly different scales within the components of the model. We 
formulate an iterative multirate Galerkin finite element method 
then employ adjoint operators and variational analysis. The a priori 
analysis uses the fact that iterative multirate Galerkin finite ele- 
ment method is a consistent approximation of the analytic fixed 
point iteration we construct. The hybrid estimate has the form of 
a computable leading order expression plus uncomputable quanti- 
ties that are provably higher order in an asymptotic sense. These 
higher order terms vanish when the convergence in both the solu- 
tion and adjoint are reached. The computable expression repre- 
sents the error in terms of contributions from the numerical 
error arising in the solution of each component, the iteration error, 
and the error in the adjoint arising from the analytic fixed point 
iteration. The a posteriori analysis takes into account the fact that 
the original problem and an analytic fixed point iteration are asso- 
ciated with different adjoint problems. We conclude with some 
examples that demonstrate the accuracy of the computable parts 
of the hybrid a posteriori - a priori estimate. 
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SUMMARY 

In this paper, we develop an a posteriori error analysis for operator decomposition iteration methods 
applied to systems of coupled semilinear elliptic problems. The goal is to compute accurate error estimates 
that account for the combined effects arising from numerical approximation (discretization) and operator 
decomposition iteration. In an earlier paper [1], we considered "triangular" systems that can be solved 
without iteration. In contrast, operator decomposition iterative methods for fully coupled systems involve 
an iterative solution technique. We construct an error estimate for the numerical approximation error that 
specifically addresses the propagation of error between iterates and provide a computable estimate for the 
iteration error arising due to the decomposition of the operator. Finally, we extend the adaptive discretization 
strategy in [ 1 ] to systematically reduce the discretization error. Copyright © 2010 John Wiley & Sons, Ltd. 
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1. INTRODUCTION 

We develop an a posteriori error analysis framework for operator decomposition iteration methods 
applied to systems of coupled semilinear elliptic problems of the form, 

C\(x,u\, Duv, D
2u\) = fl(x,ui,u2, Du2,u3, Du3,- ■ ■ ,un,Dun),    x e Cl, 

£2(1,«2,Du2,D
2u2) = f2{x,ui,Dui,u2,U3,Du3,--- ,un,Dun),    ie!l, 

(1.1) 

Cn(x,un,Dun,D2un) = fn(x,Ui,Dui,u2,Du2,--- ,un-.uDun-Uun),    x e ft, 

where Dv and D2v are the first and second order derivative operators, {Ci,i = 1, ■•■ ,n}, is 
a collection of linear uniformly coercive, elliptic differential operators, {/,,i = !,-•• ,n} is a 
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2 V. CAREY, ET AL 

collection of differentiable functions, fl is a convex polygonal domain with boundary dfl, and (I.I) 
is supplied with suitable boundary conditions on dÜ. We note that the coupling in the system occurs 
through the right-hand-sides only. We assume that (1.1) satisfies suitable conditions to guarantee a 
solution in W£(£l) in weak form, e.g. generic conditions involve a uniform bound on the derivatives 
of /. An extension of our analysis to fully nonlinear elliptic systems is straightforward but tedious 
in detail, e.g. involving a messy linearization of the diffusion operator. 

Interest in coupled physics problems and their solution arises in many fields. The Oregonator 
model for the Belousov-Zhabotinsky reaction system, 

e—-c£>iVui    =    u\-uv-JU2- 
dt U\ + q 

- D2V
2u2    =    «l - u2, 

du*       n v-2. 
dt 

is an example of an important time-dependent coupled semilinear system. In order to consider waves 
traveling with permanent form with velocity c in the x-direction, we make the ansatz, Ui(t,x,y) = 
ui{v> 2/)i * = 1,2, where rj = x — ct. Upon substitution we obtain the stationary coupled semilinear 
elliptic system, 

-eDiV;ui    =    ec—-+Ui-u\-fu2—-—, 
or] Ui+q 

, du2 -D2\7fu2    =    c— VUi-u2, or) 

where Vj(-) = d2{-)/dr)2+82(-)/dy2. 
In many practical situations, coupled systems of partial differential equations are decomposed into 

individual physics components, each of which is solved with a code specialized to the particular 
type of physics, while the solution is obtained by various forms of iteration and/or operator 
decomposition. Such approaches introduce new forms of instability and new sources of error that 
must be included in an a posteriori error analysis, see [2] for an overview. 

In this paper, we assume that the system (1.1) is solved by an operator decomposition approach 
that involves iteratively solving for u;, i = 1,... n, the ordered sequence of problems 

£j(i, uh Duh D2ui) = fi(x, üi,Düi, ü2, Dü2, ■■■ , ü;_i, Dü^i, uh üi+1, Düi+U ■ ■■ ,ün, Dün), 

which are obtained by substituting solutions üj for j ^ i computed in a previous step in the 
equations in (1.1) and then solving for u;. Theoretically, the sequence is iterated until convergence 
(if it does converge), while in practice, a finite number of iterations is used. 

In [I], we present an a posteriori error analysis for operator decomposition methods applied to 
systems of elliptic equations that had an "upper triangular" form, so that one iteration through the 
system produces the solution. That analysis accounts for: 

• errors arising from the discretization of each component elliptic problem, 
• the transfer of error between the component elliptic problems, 
• errors resulting from using different discretizations for the component elliptic problems. 

In a fully coupled system (1.1), we need to iterate through the components until, hopefully, the 
iteration converges. In addition to the errors affecting the solution of a triangular system, the a 
posteriori error analysis now must also account for: 

• the effects of finite iteration, 
• the transfer of errors between iterations. 

These two effects are the focus of the analysis in this paper. The results in this paper can be combined 
with the full analysis of [ I ] to treat all five of these effects in one estimate. 

We let U^ be a numerical approximation obtained by iterating numerical discretizations of the 
differential equations k times. To carry out the a posteriori error analysis, we decompose the error 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010) 
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OPERATOR DECOMPOSITION ITERATION FOR ELLIPTIC SYSTEMS 3 

as 

U-U^= «-«<*> +   «<*>-£/«=>    =£W+^k\ (1.2) 

analytic iteration error    numerical error 

where u^ is the analytic solution obtained at iteration k by solving the sequence of iterated 
differential equations exactly. We estimate these two components separately. This decomposition 
is motivated by the observation that the iterative discrete approximation is a consistent numerical 
solution of the analytic iterative problem. One consequence is that this simplifies the definition 
of an appropriate adjoint for the error analysis. Namely, we use the adjoint associated with the 
solution operator of the sequence of iterated component problems. This is a complex operator that 
can itself be defined through an iterated sequence of adjoint problems to the individual components. 
In practical terms, we can compute the resulting a posteriori error estimate without forming and 
solving the adjoint for the fully coupled system. Solving the full adjoint of the coupled system is 
computationally impractical in situations in which operator decomposition iteration is used to solve 
the forward problem. 

The main focus of this paper is a posteriori error estimation of the numerical error e^. At the 
fcth step of an iterative solution process and for a given quantity of interest, the analysis accounts 
for: 

• the numerical errors made at the current iteration, 
• the numerical errors made at all previous iterations, 
• the error due to the iterative approximation. 

For clarity of exposition, we do not include treatment of the errors arising from the use of different 
discretizations for different components. Such effects are already treated in the earlier paper [ I ] and 
those results can be combined with the results in this paper in a straightforward way. 

To obtain a full a posteriori error estimate of the error u — U^k\ we have to also estimate the 
analytic iteration error S^. The difficulty is that this involves the true solution and an "iterative" 
true solution, both of which are unknown. However, for a fixed space mesh, we can adapt the 
classical asymptotic estimator for the error in an iterative approximation to this situation. Lacking 
such an estimate, the a posteriori error estimate of e^ provides an estimate of the full error 
provided the numerical error dominates the iteration error, i.e. in the limit of increasing iterations. 

When we have estimates for 8^ and e^k\ we can then derive a generalized adaptive algorithm 
that adjusts both the number of iterations and the level of discretization in each component to achieve 
a desired accuracy with relative computational efficiency. 

This work can be differentiated from a number of previous analyses of nonlinear problems, e.g. 
see references in [3-9], in concentrating on new issues arising in fully coupled systems and dealing 
explicitly with the effects of operator decomposition and finite iteration. Ignoring the coupling 
involved in treating a system, e.g. simply estimating the error in each component in isolation, can 
lead to catastrophic failure of the error estimates. See Example 3.2 of [I] and Example 4.1 below. 
The alternative approach, which uses the adjoint of the fully coupled semilinear elliptic system, 
provides a valid error estimate (up to linearization error), but fails to differentiate the sources of 
error. 

The outline of the paper is as follows. To explain the ideas behind the definition of an appropriate 
adjoint operator for the iterated system and the a posteriori error analysis, we begin by deriving 
an a posteriori error estimate for the iterated solution of a finite dimensional algebraic systems in 
Section 2. This derivation contains the main ideas without the complications of differential equation 
discretization errors and moreover makes it easy to construct several illuminating examples. We 
then turn to the analysis of coupled semilinear elliptic problems in Section 3. We present results 
for three particular classes of operator decomposition iteration techniques, namely block Jacobi, 
block Gauss-Seidel and relaxed block Jacobi. In Section 4, we give numerical examples of different 
aspects of the error estimation framework, concluding with an adaptive algorithm that adaptively 
refines both the computational mesh and the operator decomposition iteration to converge to an 
accurate solution. 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Merh. Engng (2010) 
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2. PRELIMINARY EXAMPLE: ITERATIVE SOLUTION OF ALGEBRAIC SYSTEMS 

In order to explain the construction of an appropriate adjoint operator for an iterated solution 
approach and the idea that the numerical error of the current iterate is affected by errors introduced 
at all previous iterations, we first present the analysis in the context of finite dimensional algebraic 
systems. We begin with a linear problem and then treat a nonlinear problem. 

2. /. Estimating the numerical error for linear algebraic systems 

We consider the solution of 
Aw = b. 

We construct an iterative solution method using a matrix decomposition of A of the form 

A = D + C, 

where we assume that D is invertible. The solution procedure uses the observation that 

(D + C)w = b^~Dw = b-Cw 

and solves 
™{0} =0, 1 

Dw(i) =b-Cw{l~l\ i = 1,2,..., A:    J 

We assume that the iterative scheme converges, which depends on the spectral radius of D_1C. 
At each stage of the iterative process, we compute a numerical solution W'l> ~ w'*'. Our goal 

is to estimate the error in a quantity of interest that is representable as a linear functional of the 
solution, i.e., a quantity of interest of the form (w, ip), at any iterate i. We write this error as 

(w-W{'\iP) =        (w-w{i\iP)       +(w{l] -W{l],iP) =£{,) +e(,). 

analytic iteration error      numerical error 

Here, a superscript in braces W indicates variables corresponding to forward iteration i. Let A; be 
the total number of forward iterations performed. Later, we use a superscript in square brackets b'l 
to denote the adjoint problem corresponding to forward iteration i = k — j + 1. 

Finally, we introduce the notation 

iil{u
{j\4>^-u{3-l}) 

to denote the residual of equation i, at iteration j, weighted by the fcth adjoint problem, evaluated 
using the solution generated at iteration j — 1. 

2.1.1. Estimation of the numerical error e^. Because the previous iterate enters as data, the 
numerical error e^ depends not only upon the numerical error made at the Ith iteration, but also 
on the numerical errors made at previous iterations. Hence, we need to estimate the effects of these 
"inherited errors". 

Given W^ = 0, we compute the sequence of approximate solutions W^ of (2.1), i = 1,... ,k, 
as 

T>W{l} = b - CW{l~1}. (2.2) 

Theorem 2.1 
The error in the quantity of interest can be estimated as, 

k 

(em </,) = Y,K(w{k-i+l},4fi];W{k-i}), (2.3) 
3=1 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010) 
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where the adjoint problems are defined, 

DV
11

    =    4>, (2.4) 
DT0W    =    -CT^~l\    j = 2,...,k, (2.5) 

and 
1l(W{k],<P^;W{m}) = (b-CW{m] -~DW{k\4>^). (2.6) 

Note that the adjoint problems (2.4)-(2.5) involve the simpler matrix associated with the iterative 
scheme, not the full adjoint of the original matrix A. To emphasize the role of the error in the most 
recent (/cth) iteration, we may write 

k 

(e<fc>,V) = {W^,^;W^-1^ +J2n(W{k~J+l}><t>[jl>W{k~j})- <2-7) 
j=2 

Also note that the sequence of coupled adjoint problems (2.5) yield the natural adjoint to the solution 
operator associated with the iterative method. We emphasize this point by numbering the adjoint 
problems in the reverse order to the forward iteration number. 

Proof 

The estimates of the numerical error after k iterations is 

=    (i-C^-'l-D^U111) 
=    (b- CW^'-1' - D^),^) - (C(w^k-l> - W<k-l>), </»[']) 

=    TZ(W^,4,M;W^k-^)-(C(w^k-l}>-W^-^),4,W). (2.8) 

The first term on the right of (2.8) is the usual error estimate depending on the computable residual 
of W^ and the corresponding adjoint solution. The second term on the right of (2.S) estimates the 
contribution to the error of W^ resulting from the error inherited from the approximation W^k~1^ 
to w(k~1}. This inherited error term can be expressed as the error in a new quantity of interest at 
the previous iteration by noting that 

-(cry^-w**-^),^1)) = («Z*-1* - w{k-l\-cT4JM) = (e^-^-cV11)- 
To estimate the error in this new quantity of interest, we solve the new adjoint problem 

to obtain 

(e{«=-i}) -c V1!)    = (u,**-1» - Wrf*-i>, -cV1') = (w{fc~1} - w^k-l\ D V2i) 

= (&-Cw<fc-2>-DW<*-i>,0[2l) 

= (b- CWlk-2> - Dlfl1-1»,^1) - (C(^-2> - W{*-2>),0PJ) 

Continuing in this fashion, we see that the desired estimate of the error in the quantity of interest 
(e^k\ tjj) after k iterations requires the solution of (2.4) and the recursive solution of an ordered 
sequence of (k - 1) adjoint problems 

DT0W =-C^-i],    j=2,...,k, 

and 
fc 

D 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010) 
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6 V. CAREY, ET AL 

2.1.2. The decay of influence of contributions from early iterations. To estimate the numerical error 
in the quantity of interest after k iterations, we nominally need to solve k adjoint problems. (One 
of the form (2.4) and k — 1 of the form (2.5)). Each of these is solvable, but the number can be 
significant. The sequence of adjoint problems has the form 

^[J+I] = _(D-TCT)V[1!,   j = l,...,jb-i. 

By noting that 
D^1(CD-1)D = D-1C, 

we see that D_1C, CD-1 and D~TCT all have the same spectral radius. For the forward iteration 
to converge the matrix product D_1C must have a spectral radius smaller than one. This means that 
we expect that 

0[m-/ + l] = _(D-TCTjm-t0[l] _> Q 

for fixed / as m —> oo. This suggests that we might obtain a reasonable approximation 

i 

(e<k\i>)*J2n(Wik~J+l}><t>bl<w{k~J)) <2-9) 
3=1 

for some small / > 1. The more rapid the convergence of the forward iteration (the smaller the 
spectral radius of D-1C), the smaller the value of I required. 

2.1.3. Estimating the iterative error £^k\ We begin with a classic estimate for the iteration error 
based on extrapolation. We define J (•) = (•, ip) and denote £(fc> = w - ti/fcJ. Assuming a linearly 
convergent sequence J (S^''), the classic asymptotic argument yields, 

3 (s<fc>) « - 
J (wW) - J («/(*-!}) - (J (w^-V) - J (w{fc-2})) 

This estimate is not directly computable, however, the righthand side can be further estimated as, 

j(ew) 
{J (eW)-j(efH) +J(WM) - J (W^-^) f 

J (eW) - 2J (ei^-!}) + J (e{fc-2>) + J (WW) - 2J (W^-i}) + J (WV°-V) ' 
(2.10) 

The expression (2.10) can be estimated using the a posteriori error estimate, but this is expensive. 
We may derive another estimate by assuming the numerical error is higher-order than the iteration 
error, to obtain 

-(j(Wlk')-j(W<k-»))2 

j(sw) 
J (WW) - 2J (W^-V) + J (W(k-V) ' 

(2.11) 

The approximation (2.11) may, however, lead to inaccurate estimates when the iteration and 
numerical errors are of comparable size. 

2.1.4. Numerical example. We construct a diagonally dominant, symmetric 20 x 20 matrix A = 
201 + R where R is a random 20 x 20 matrix with Frobenius norm less than or equal to one. 
We decompose A into two matrices D and C, A = D + C, where D contains only the diagonal 
entries of A. We then solve Au — b via operator decomposition iteration with the iteration given 
by (2.1) where the solution at each iteration is obtained using conjugate gradient solver with a 
tolerance of 10-4. The iteration terminates when ||C/^1 _ [/('-^H < 10-8 which is accomplished 
in 11 iterations. We then solve (to within round-off) the sequence of 11 adjoint problems defined 
recursively by (2.4) and (2.5) for quantity of interest w = u2o, i.e., with D^'1' = tp = e2o (where 
e2o is the unit vector with a single non-zero entry in the 20th row)and compute each of the terms 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010) 
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Total Error 
|W20_Vl/{n}| 

Iteration Error Numerical Error Primary Numerical Error 
\Tl(W^lK^;W^)\ 

7.43823 x 1CT5 2.2234 x lfT11 7.4382 x 1CT5    |           9.465 x 10-5 

Table 2.1. Error components for w'11' for example 2.1.4. 

in the error representation formula (2.3) for k = 1,..., 11. We call the first term in this sum the 
primary numerical error. 

The expected decay of the contributions to the error e\Q ' that are inherited from previous 
iterations is illustrated in Figure 2.1. 

4 6 
History Term (j) 

Figure 2.1. Individual "history" terms TZ(W^U   J + lt, 4>^; H/t11"-»)) for example 2,1.4 illustrating the 

expected decay in contributions to e\a    with index j. 

2.2. Estimating the numerical error for nonlinear algebraic systems 

Nonlinearity introduces additional complexities for defining an adjoint problem. We solve the 
nonlinear equation 

Aw = f{w) (2.12) 

by successive approximation 

Aw;{i} = /(w<i"1>), i = l,...,k (2.13) 

with W(°} — 0. Given W^ = 0, we compute the sequence of numerical approximations W^ for 
i = 1,..., k as 

AW{i} =/(^*I_1>). (2.14) 

Theorem 2.2 
The error in a quantity of interest is estimated as, 

.7 = 1 

where the adjoint problems are defined, 

AV11 = V». 
AT0[j'l = Lf(w{k-j],W{k-j))T4>^-1],    j = 2,...,k 

(2.15) 

(2.16) 
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using the linearization Lf(v, V) defined, 

Lf(v,V)= I 3(sv + (l-s)V)ds, 
Jo 

where J(-) is the Jacobian of /. 

Proof 
The steps are similar to the previous arguments, 

(e<fc>,V)    =    (e^'),AT^ll) 

=    (A^-A^'>,/1) 

=    (/(^fc-D) _ AWW,<t>[1]) + (f(wlk~l]) ~ /(^{fc-1})^[11) 

=  n{w^k\^-w^-^) + (L/(^fc-1>,^fc-1>)e^-1>I^
1)) 

^7e(^{^+i}j^];W.{fc-J}). 
j=i 

D 

2.2.7. Linearization and adjoints for nonlinear adjoints. In general, there are multiple ways to 
define an adjoint to a nonlinear operator [ 10]. Choosing a suitable definition is highly dependent on 
the purpose for which the adjoint is intended. For a perturbation or error analysis, one systematic 
way to define an adjoint is based on linearization. Consider an approximate solution W ~ w of 
(2.12) computed without iteration, and define the residual 

TZ(W) = AW - f{W). 

The standard analysis begins 

A(tu - W) - {f(w) - f{W)) = -K(W). 

The integral Mean Value Theorem yields 

f(w) - f(W) = Lf (w -W) = / 3(sw + (1 - s)W) ds (w - W). 
Jo 

Introducing the formal adjoint problem 

(A-Lfy<i> = i> 

leads to the a posteriori error estimate 

(w-W,^) = (-Tl(W),<P). 

In practice, the linearization Lf cannot be computed and it is approximated as, 

Lf(v,V)=  f 3{sv + (l-s)V)ds&  f 3{sV + {l-s)V)ds = 3(V). (2.17) 
Jo Jo 
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The approximation in the linearization may certainly affect the accuracy of the a posteriori 
error estimate. However, the effect can be bounded a priori under regularity assumptions on the 
problem, i.e. the second derivatives of / are uniformly bounded in a compact region containing 
the true solution, analytic iterative solutions, and iterative numerical solutions, and assuming 
that the iteration converges and the approximations are sufficiently close to the true solution. 
In particular W should be sufficiently close to w and K(W) should be sufficiently small. In 
practice, the approximation (2.17) works well in many situations in the sense that the linearization 
error has relatively insignificant effect on accuracy of the estimate when the numerical solutions 
are reasonably accurate. Perhaps more importantly, catastrophic failure of the a posteriori error 
estimate, that is an estimate that is low when the actual error is large, is relatively difficult to 
manage. See [8] for a discussion of this point for systems of reaction-diffusion equations and an 
example where catastrophic failure is created. 

However, this simple approach to defining an adjoint operator when operator decomposition 
iteration is used can fail. The difficulty is that an iterative solution W^ is actually solving a problem 
that is significantly different than the original problem. See [2] for a discussion of this point. 

The approach to define an adjoint for Theorem 2.2 avoids this issue by constructing a global 
adjoint for the iterative solution operator via a sequence of coupled adjoints for each individual 
component problem obtained by linearization between the iterative analytic w^ and iterative 
numeric W^ solutions. The effects of this "local" linearization can be controlled under local 
regularity and convergence assumptions as described above. In practice, 

AT0|jl = Lf(w{k~j}, W{k-j})J^-l] 

is approximated by 
AT^1 = J(lvffc--»>)T^y-1l (2.18) 

for j = 2,...,k. 
The price of the indicated approach to defining an adjoint for the iterated solution operator is that 

the a posteriori error estimates accounts only for the numerical error t"' and leaves the analytic 
iterative error £^ remaining to be estimated. We adapt the estimate discussed in Sec. 2.1.3. 

2.2.2. Numerical examples. We now consider three new situations that may arise for nonlinearly 
coupled problems. Let 

Aw = f(w), 

where 

3 -1 0 0 
1 3 0 0 
0 0 3 -1 
0 0 -1 3 

A=       . and    f(w) = a 

exp(-£(w3 - 0.4)2) 
exp(-ß(w4 - 0.6)2) 
expl-ßlwi - 0.5)2) 
exp(-ß(w2 - 0.3)2) 

and let the quantity of interest be the value of w2. In all cases, a high accuracy reference solution 
w was generated using Newton's method with a tolerance of 10-12 while we also computed high 
accuracy reference iterative solutions w^ to full precision. To compare to estimates employing the 
adjoint problem associated with the original system, the "global" adjoint corresponding to the full 
(i.e. non-decomposed) problem was also constructed and solved and error estimates based on the 
adjoint to the full problem are reported in the following examples. We set, 

• TZ(W, <f>) is the error estimate obtianed by solving an adjoint problem using the exact 
linearization of the global adjoint problem, i.e. linearizing around the average of the reference 
solution w and the approximate solution W, while 

• 7l(W, </>) is the error estimate obtained from using an approximate linearization of the global 
adjoint problem. 

The approximate solutions WW were computed by rounding to the 6th decimal place. All adjoint 
solutions were computed with full precision. In each case we estimated the iteration error using 
(2.11). 
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Increasing  the  value of a  essentially reduces  the diagonal  dominance of the  operator 
decomposition, damaging iterative convergence, while increasing ß raises the linearization error. 

Cancellation between iteration and numerical error. Let a = 1, ß — 10, i = 40. The iteration 
converges after 40 iterations when the norm of the residual is less than 10-4. Results are provided 
.in Table 2.2. 

Error 
\yj2 — W2\ 

Estimated Error Practical Error Iteration Error 
{fc} 

W2 - ^2 

1.1102276 x 10~e 1.1102276 x 10~G               1.10983 x 10~G           -2.55547 x 10-6 

Numerical Error Est. Numerical Error 
^(Urtfc-i+i},^]) 

Pract. Numerical Error 

Ej^(^{fc-J+1},^'1) 
Est. Iteration Error 

1.44524 x 10~G    |        1.44524 x 10~6                  1.44592 x 10~6        |    -6.6554 x 10_G 

Table 2.2. Error components for example 2.2.2. Note the cancellation of errors between the iteration and 
numerical error. ( 1l(W^k-j+1\^; W^k~^) = n(W^k-j+l), 0W).) 

Notice that the adjoint to the coupled problem gives an excellent estimate of the error, yielding 
four significant figures even when using the approximate linearization. What is obscured is the 
cancellation that occurs between the iteration and numerical error. The methods developed here 
enable the iteration and numerical errors to be estimated separately and this is important when 
constructing adaptive algorithms. However, the iteration error estimate is polluted by the numerical 
error in f/^1. The partial sums of the history terms are plotted in Figure 2.2 where expected decay 
of history error contributions can be observed. 

15 20 25 30 
# of Histoiy Terms 

Figure 2.2. Numerical error estimate YlT=i T^{U^k  j+1K <t>^\ U^k  -'*) including m "history" terms for 
Ex. 2.2.2. 

The effect of linearization error. Let a = 2, ß = 8, i — 100. In this example, the iteration fails 
to converge. In addition, u/fc) and W^ approach they same fixed point, but hey both do so in a 
non-monotonic fashion. This produces significant differences between Lf(w^k~j\W^h~^)T and 
j(iy{fc-i})T (see equations (2.16) and (2.18) respectively) and consequently significant differences 
in the corresponding adjoint solutions <j> and <^>. Results are provided in Table 2.4 where the practical 
numerical error estimate is seen to be completely inaccurate. 
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To obtain an estimate of how rapidly the adjoint solutions <j> and cp can diverge, we see from (2.16) 
and (2.18) that 

d.7l =    A 

A~T (Lf(W^k-j\wik-j})-3(W^k-^)\   4>[j~y] 

so the spectral radius of A-T [Lf{W^k~^ ,w^k~^) - 3(W^k~^)) can be considered as an 
amplification factor to explain the exponential accumulation of linearization error in the history 
error estimate. 

Error 

U»2 — VK2 

Estimated Error Practical Error 
n(wÄ) 

Iteration Error 
{fc} 

W2 — W2 

-0.048166 0.048166 7.06634 -0.050168 

Numerical Error Est. Numerical Error 
£.rc(W^-fc>,<^l) 

Pract. Numerical Error Est. Iteration Error 

0.002002                  0.002002          |           3.58 x 106           |         -0.04568 

Table 2.3. Error components for Ex. 2.2.2, with TZ{W^k-J+lK4>[j]) = n(wVc-j+1\<j>W; W<k~^). 

-0.5 

40 60 80 100 120 
Iteration 

Figure 2.3. Differences between w^    and VK2'     and the spectral radius of A  T(Lf(w, W) — J(W))T for 
Ex. 2.2.2. 

Divergent iteration Let a = 2, ß = 7, k = 100. The iteration fails to converge, but all error 
estimates in Table 2.4 are well-behaved but exhibit significant linearization error. Not surprisingly 
since the iteration error estimate assumes a convergent iteration, the estimate of the iteration error is 
poor. However, despite the fact that the iteration is divergent, the estimate of the numerical error is 
accurate and the effectivity ratio (denned as the ratio of the error estimate to the true error) shown 
in Figure 2.4 improves as the number of history terms is increased, although the practical numerical 
error estimate is affected by errors resulting from the linearization. 
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12 V. CAREY, ET AL 

Error 
\w-2 — W2[ 

Estimated Error Practical Error 
n(w,4>) 

Iteration Error 
{k} 

0.0999965 0.0999965 0.076506 0.0999963 

Numerical Error 
{k}       W{A.} u>2     — W^ 

Est. Numerical Error Pract. Numerical Error Est. Iteration Error 

1.8524 x 10~6   |       1.8524 x 10~6                1.8530 x 10-6                   0.18273 

Table 2.4. Error components for Ex. 2.2.2. (Jl(W{k-j+1\<t>W) = n{W^k-j+l),<j>^; W^'^). 

40 60 
U of History Terms 

Figure 2.4. Effectivity ratio for the numerical error estimate JZJii Tl{W^k~j+l\ <j>W; W^k~^) including 
m "history" terms for Ex. 2.2.2. 

2.2.3. Discussion. An interesting case is the situation in which the numerical error is much higher 
than the stopping criteria (say round U to the third decimal place), but the corresponding theoretical 
iteration converges quickly. The computation does not converge due to the numerical error, but the 
quick computation of a few history terms leads to an exact estimate of the numerical error. See 
Section 4.2.4 for an adaptive solution to a similar problem. 

In all three examples, the global adjoints are not diagonally dominant (or SPD). But even when 
the operator decomposition iteration solution for the global adjoint (e.g. a "Jacobi" iteration) does 
not converge, the a posteriori error analysis still provides meaningful error estimates. See Section 
4.2.2 for more discussion. 

3. ANALYSIS FOR SEMILINEAR ELLIPTIC SYSTEMS 

For ease of presentation, we focus the analysis on a two component fully coupled elliptic system of 
the form 

-V ■ aj(x)Vui + b\(x) ■ Vu\ +Ci(x)ui = fi(x,Ui,v,2,D112),    x £ Q, 

-V -a2(x)Vu2 + b2{x) • Vu2 +c2(»U2 = f2{x,ui,Dui,u2),    x e fi, 

Ul = u2 = 0,    x € dfl, 
(3.1) 

where fi is a convex polygonal domain in E',i = 1,2,3, with boundary dfl, and we assume that 
ß/j bt, Ci, fi, i = 1,2 are sufficiently smooth to establish optimal order a priori convergence for the 
finite element method computed without operator decomposition iteration. 
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The weak formulation of (3.1) is: findum e W2(fl) satisfying 

Ai(uuvi) = (f1(x,ui,u2,Du2),vi),    Vvi e W2(ty, 

A2(u2,v2) = (f2{x,ui,Dui,u2),v2),    Vv2 e W2(Q.), 

where 

■Ai(ultvi) = (aiVux, \/vi) + (6i ■ Vuuvi) + (ciuuvi), 

A2(u2,v2) = (a2Vu2,Vv2) + (b2 ■ Vu2,v2) + (c2u2,v2), 

are assumed to be coercive bilinear forms on Q and Wp(fl) represents the subspace of W'l(Q) with 
zero trace on du. 

If we were numerically solving (3.2) without operator decomposition iteration, we would 
introduce conforming discretizations S/i,m(fi) and then solve the discretized system: find Um e 
S/l|TO(fi) satisfying 

A^UuXi) = {hix,UuU2,DU2),Xi),    Vxi-e5him(n), 

A2(U2,X2) = (f2(x,Ul,DUuU2),X2),    VX2 € 5h,m(n). 

3.1. Analysis of operator decomposition iteration solutions 

We analyze three different operator decomposition iterations for producing numerical 
approximations of (3.1). We recall that we decompose the error as in (1.2), i.e., 

U_f/W= „_„{*> +   u{k}_u(k)   =£{k)+e{k)^ 

analytic iteration error    numerical error 

where u^ respectively U^ are the analytic and discrete solutions obtained by the particular 
iteration approach under consideration. The a posteriori error analysis is for the numerical error 
e{fc} we estimate the analytic iteration error E^ by a natural application of the estimates discussed 
in Sec. 2.1.3. To simplify the analysis, if the resulting operator decomposition elliptic equation for 
U' is nonlinear (in [/'), we assume that the error introduced by its nonlinear solve is negligible. 

For simplicity of presentation, we assume the quantity of interest is given as a linear functional 

of the second solution component, determined by ip = (0,^2) . i.e. we estimate (e^ ,^2)- For 

notational convenience and to be consistent with [ I ], we abbreviate the weak residual of a solution 
component, 

Km{p,,x,v) = (/m(")iX) -Am(fi,x),    rn = 1,2. 

3.1.1. Block Jacobi iteration We first consider a block Jacobi operator decomposition iterative 
approach to the solution of the semilinear elliptic system (3.1). 

Algorithm 1 Block Jacobi algorithm 

Given u{0} and £/2
{0> 

for i = 1,2,3,... until convergence do 
Findig 6 5M(fi) 9 A1(u{l],xi) = (/i(i,f/1

{i},C72
{i-1}

IDL/2
{i-1>)]Xl)Vxi e5M(fi) 

FindC/2
W 6 5w(n) B A2(U2

[i],X2) = (/2(*, U^,DU^l\u^),X2) VX2 € Sh>2(ü) 
end for 

Theorem 3.1 
The representation formula for the numerical error e^ is 

7<fc, j odd j^&i i even 

(3.4) 
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where the corresponding adjoint problems are 

A (x, <t>f) = (x, 4'').   vx £ w* (n),   j < k, j odd, 
^(X,^1) = (x,^iW).     VX £ W^A),    j < *, j even, 

with 
•/4!(v,u;) = (Vv.aiVto) - (v,div(&iw)) + (v,(a - JlA(U))w), 

A2(v,w) = (Vv,a2Vw) - (v,div (b2w)) + (t>, (c2 - J2i2(<7))w), 

and the additional adjoint data is defined recursively as 

(X,4J1) - {Ji.2(U{h-j+1})x,<t>t1]),    3 < *. J odd, (3.7) 

Mt") = (-/2,i(^{fc-j+1})x.^_11),    J < *, ieven, 

where Jm,n(V) is the Jacobian of /„, with respect to u„ evaluated at V. 

If we wish to highlight the final (fcth) iteration, then we can write 

2<j<k, j even 

+ Y.      MU2k~J+1\^]Mk~i})-   (3-8) 
3<j<fc,j odd 

Proof 
In   the   following,   we   simplify   notation   in   the   functions   /,   so   for  example   we   write 
fi(x,ui,u2,Du2) = fi(u2), and so on. 

(eW,V)    =    (4k\*2l]) 

= A2(4
k},$]) 

=   A2{4
k\4>[?) - A2{U™ J?) 

= (Mu\k-1}M[
2
l])-Mu?K<P[

2
l]) 

=   (Mu{k-l))J2
1])-A2(u^J!]) + (/a(«i*-l,),rfI) - (/2(^

{fc-1}),411) 
=    ^2(C/f >,41';f/<fc-,>) + (L/2(uifc-1>,C/1

{fc-1})ep-ll,4") 

«    ^2(C/2
W,41]-^{fc-1}) + (^(^1

{i-1})e|fc-1>,41]) 
=  7e2(,7f>,41);r7/fc-1>) + (eri>)^) 
=  n2(u?\4];u}k-")+A*Mk-l\<fiW) 

+(LfMk-i},u<k-*)4k-a},<F) 
«   7l2(^

},411;[/f-1>) +7l2(C/{fc-1},42l;t/2
{fc-2}) + (^(t/f-2>)e<fc-2\421) 

= .      £     7e2(£/2
{fc-J+1},^'1;t/1

{'c-J'})+     ]T     7e1(C/1
{^+1>,4!;I/2

{fc-j}). 
j/<fc, j odd j^hi 3 even 

(3.9) 
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D 

The estimate in this case takes into account the numerical error arising from each component 
solution and the inherited errors passed between iterations. Following the discussion in Sec. 2.2.1, 
we are using the adjoint naturally associated with the analytic iterative solution operator. We use 
"local" linearization L/i(uj , £/' ) between uj ' and Uj ' to define the required adjoints for each 
component equation in the iteration. The effects of this linearization can be controlled assuming 
sufficient regularity of the solution and a priori convergence of the discretization, and we expect the 
estimates to be accurate for all sufficiently accurate numerical solutions. The global adjoint of the 
iterated solution operator is therefore obtained by a sequence of "single physics solves". We note 
that we still have to estimate the analytic iteration error S^kK 

3.1.2. Block Gauss-Seidel iteration Next, we consider a block Gauss-Seidel operator decomposi- 
tion iteration. 

Algorithm 2 Block Gauss-Seidel algorithm 

Given C/2
{0}, 

for i = 1,2,3,... until convergence do 

Findig 6SM(fi) 3 Al{uli)!xi) = (fi(x,uil},U^-l},DU^-1}),xi)yXi G5M(fl) 
Findt/2

{1} 6 5,,,(fi) 3 A2(U<l],X2) = (f2(x,U{
l
l\DUil},Urj'

]),x2)^X2 e 5M(n) 
end for 

Theorem 3.2 
The representation formula for the numerical error e^ is 

j=i v    J=i ^  
within iteration errors between iteration errors 

where the corresponding adjoint problems are 

^2(x,4j1) = M^),   vxew^n),   i = i *, 

At(x,<$]) = (x^]),   v* £ Wat«),   3 = I,--,*. 
(3.11) 

and the adjoint data is defined recursively as 

411 - y,^11 = o, 
(x^2

b1) = (Ji(C/{fc-J + 1>)x,^_11)>    J=2,...,fc, (3.12) 

MJV(W{^ + 1>)X,4J1), i = l,...,A:. 

Proof 

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010) 
Prepared using nmeauth.cls DOI: 10.1002/nme 



16 V. CAREY, ET AL 

=   MU}"},$W}) + (Lf2(u\k},U^)e[k\^) 

= n2{u?\$Mk)) + Mulk\<ti]Mk-l]) 
+{LfMk-l} Mk~l))e[k-l\^) 

« ft2(£/ft,411;^>) +7e2(f/1
{fe},411;^{fc~1}) + (.Mt/f-11)^-1',^11) 

j'=i j=i 

D 

In this case, in contrast with (3.4), there are contributions to the error reflecting both "within" and 
"between iteration" errors. 

3.1.3. Relaxed block Jacobi iteration Both the Jacobi and Gauss-Seidel operator decomposition 
iterations can be "relaxed" by letting I/W = aU^ + (1 — a)U^k~x^, where a tilde denotes a 
quantity computed before relaxation. The approximation is obtained via 

Algorithm 3 Relaxed block Jacobi algorithm 

Given u\0) and £/2
(0> , 

for i = 1,2,3,... until convergence do 

Findt/^ esM(n) 3 ^((jp.xi) = (fi(*M]Ml-1},DUJl-l}),Xi)Vxi £ShAW 
Calculate new iterate u[i] = aÜ[i] + (1 - a)U^~1] 

FindC/2
{l} e5M(fl) 3 ^2(«72

{i},x2) = (/2(x, ^"^I^'^^1)^) V*2 6 SM(f2) 

Calculate new iterate t/2
{i> = a£/2

{i} + (1 - a)U^~1} 

end for 

This is often done in practice in order to aid convergence of the iteration, but poses more 
challenges for a posteriori error analysis and we present a partial analysis to explain how the results 
can be extended to handle relaxation. Letting U^k\ ü^k\ and e^ represent the corresponding 
quantities computed without relaxation, we have 

(u-t/{fc},V) = (u-u{fc},V)+Q(e{fe},V)+(l-a)(e{fc-1},V). (3.14) 
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Using the notation above, we have 

(e<*U) (4ki,4]) 
a(4k\^) + (l-a)(et1],4l]) 

Tl2(üt\4lMk-l}) + (/2(«[*-1,),tf1) - (/2(^-1}),rf') 
+(l-a)(eri}^2

l!) 
a 

=    a 

a 

«a(Kffc>,411;^-1}) + (Ja(^-1,)e{*-1},^11) 

-fll-a)^-11,^1) 

7e2(^,41l;^-1>) + (e[fc-1>,^1)]+(l-a)(eri>14
1]) 

Wa(^
fc},4lI^i{*~l}) + (e{fc-1}^P1)' 

+a(i-a)[7i2(t/2
tfc s^'^r }) + («r"a,>cJ) 

(l-c)2(ef-21,f) 

= «Bi-ar [wa(^-i+i},411^i{'l"'>) + («{fc~i}^iM) 
t=i 

In order to obtain a full a posteriori error estimate, we have to repeat this argument to estimate 
(e[ ~ ,ip{), i — 1,..., A:. We refrain from doing this. Clearly repeated application of this analysis 
approach results in a great number of adjoint problems to be solved. It is to be hoped that introducing 
relaxation means that relatively few number history terms need to be included for accuracy in the 
estimate. As expected the decay rate of the history terms decreases as a -> 0. 

4. NUMERICAL EXAMPLES FOR FULLY COUPLED SEMILINEAR ELLIPTIC SYSTEMS 

We present a number of examples to illustrate characteristics of the a posteriori error estimate. We 
also illustrate the use of the estimates as the basis to adaptively adjust discretization parameters 
based on relative sizes of contributions to the error estimate. 

Some of the examples are used to explore the accuracy of the a posteriori error estimate in 
situations in which the operator decomposition iteration is converging well. To measure the accuracy 
of the error estimate, we report on the ratio of the estimate to the true error (or an approximation 
computed with a highly accurate reference solution). This type of a posteriori error estimate tends 
to be robustly accurate for a wide range of spatial meshes, as has been well reported in the literature. 
We observe the same robust accuracy in the estimates when the iteration is converging well. Rather 
than reporting extensively on that quality, we concentrate the experiments on situations in which the 
estimates do not work as well as hoped. 

For adaptive error control, we employ a natural generalization of the "mark and refine" strategy 
based on the Principle of Equidistribution [1,5-8]. In this approach, the error estimate is replaced 
by a bound obtained by replacing the signed contributions to the error estimate with their absolute 
values. Starting with a coarse discretization - mesh with large element size and small number of 
iterations - we adjust the various discretization parameters according to the relative size of the 
contributions and an estimate of the computational costs associated with changes in the parameters. 
This adaptive approach is described fully in the earlier paper [ I ]. 

We make one simplification below. In [I ], we allowed the different components to have different 
meshes, which requires modification of the a posteriori error analysis to account for the effect of 
mesh changes on the numerical solution. Below, we use the same mesh for all components of the 
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18 V. CAREY, ET AL 

system in order to avoid introduction of the additional terms in the a posteriori error estimate. The 
results from the first paper can be combined with the results in this paper in a straightforward way. 

4.1. Fully coupled linear system 

The first example is a coupled system of linear equations for which we can compute an exact 
solution. The coupled problem is: Find ui(x, y), U2(x, y) satisfying, 

-V-(aVui)+&! • Vui = fi(u2),    xefi, 

-Au2 = &2-Vui,    x e $7, (4.1) 

uj = u-2 = 0,    x S dfl, 

where fi := {(x,y) : (x,y) £ [0,1] x [0,1]}, 

5 1 
a = 10 + 7T2 (— cos 4TTX + - cos ny) 

1'. J z 

7T 

8     ■    „ X    ■ —-sin47ra:     -siii7ry 
lo Z 

T 

— sin47rx    2sin7ry 
n T 

__ 1 
2 —  — 

7T 

/i(u2) = 857r"(2sin47risin7T2/ + u2). 

This system has exact solution 

ui    =   sin &nx sin 7ry 

u2    =    7r_2(sin87ro;sin7r2//65 + sin47rasin27ry/20). 

We select the quantity of interest ^2(10) where xo = (0.15,0.15); the adjoint data is then equal to 
SXa, which we regularize and denote as 6'r

ea. 
As mentioned we solve for u\ and u> on a common mesh, using piecewise linear finite elements. 

The Gauss-Seidel iteration proceeds until \\U^k^ — t/^_1^||oc < 10~5. Quadratic finite elements 
are used to compute $, and $!/' approximations to (f>^ and (f>.} . Starting with a uniform initial 
mesh, the subsequent meshes are adapted identically using the sum of just the first four terms in the 
error representation formula, namely, the sum of: 

1. the "primary"error, ex =Hi{U^k),^\ü[k)), 

2. the "transfer" error, e2 = Hi {u\k), $[1]; U2
{k~l}), 

3. the "inherited" error, e3 = TZ2(U2
{k~l},$l

2
2]-, u[k~l}), and 

4. the "inherited transfer" error, e4 = ft, (u[k~l}, $f]; U2
{k~2)). 

The corresponding adjoint problems used to compute the weighted residuals are 

Mx,<t>?]) = (x,-div(624
11)), VX e 52

h(n), 

M*>$]) = U> -div(6i^21)), VX € S£(Ü), 

^(x,0(i31) = (x, -div(b24
21)), Vx e 52

l(")- 

The initial mesh is a uniform partition with step size h = .1 for 200 elements. The iteration is 
repeated until the total error representation estimate for the quantity of interest is less than 10-4. 
The adaptive algorithm ran for three iterations before meeting the tolerance. The final mesh has 
2378 elements. The number of iterations used in Gauss-Seidel on the finest (last) mesh is 5. The 
iteration error estimate reports 1.43 x 10-6. 

The effectivity ratio (estimate/error) is .9976. 

Table 4.1 shows the contributions to the error. We observe that the "transfer" error e2 is about 
l/5th of the size of the "primary" discretization error at iteration £,, and that the "inherited transfer 
error" £4 is I/10th of the size of the primary discretization error. By contrast £3, the error inherited 
from f/2 at the iteration (k - 1), is l/500th the size of £,. 
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Primary Error (ej) Transfer Error (e2) 

0.5070 x 10"4 0.0940 x 10~4 

Inherited Error (e3) 

7e2(C/2
{fc-1},42l;C/1

{fc-1}) 
Inherited Transfer Error (e4) 

-0.0010 x 10~4         |            0.0409 x 10~4 

Table 4.1. The first four error terms, i.e., the primary error and transfer error at iteration k and the inherited 
error and inherited transfer error from the iteration (k — 1) for Ex. 4.1. 

0    0 

(a) Solution for $. HI 
0     0 

(b) Solution for $[l] 

f2l (c) Solution for <£>!,' (d) Solution for *f' 

Figure 4.1. The first four adjoint solutions, i.e., the primary, transfer and the first two inherited adjoint 
solutions for Ex. 4.1. 

4.2. Effects of iteration on the accuracy of the error estimate 

We next consider a fully coupled semilinear system that is solved by the Jacobi operator 
decomposition iteration employing continuous piecewise linear elements with initial solutions 

Copyright © 2010 John Wiley & Sons, Ltd. 
Prepared using nmeauth.ClS 

Int. J. Nuiner. Meth. Engng (2010) 
DOI: 10.1002/nme 



20 V. CAREY, ET AL 

Ui    = x, U2    — 0- The coupled system is: Findui(x),u2(:r) forz e ü = [0,1] suchthat 

-u'{= ex2"2,    xefl, 

—u'2 =    sm(ßirui),    x € fi, 

ui(0) = 0,ui(l) = l, ua(0) = u2(l)=0. 

The quantity of interest is the average value of u2 over the whole domain. The sequence of adjoint 
problems are 

<7>i(0) = <fe(0) = 0, 0i(l) = 02(l) = O, 

with 
^1 = 1 

$] = ßn cos{ßTtUlk~j])(j>^~1],    j even. 

Quadratic finite elements are used to compute $f' and $5" approximations to 4>i and 4>2 
and the 

iteration is performed until the iteration error estimator (2.11) is less than 10-6 or until a maximum 
of 30 Gauss-Seidel iterations are performed. 

We examine different sets of parameters that affect the convergence of the iteration and, 
consequently, accuracy of the estimate. 

4.2.1. Slowly decaying history contributions. The first example demonstrates problems that can 
arise when the history contributions decay very slowly. We fix ß = 10 and compute approximations 
for A = 2,4,8,16. As a grows the nonlinearity becomes strong and the diagonal dominance in the 
iteration is weakened. We use a uniform mesh with h = 0.05 for the approximate solutions and 
we use a fine mesh with h — .005 to compute a "reference" solution. We run the iterations until 
||t/{i} _ [/('-I) || < 10-6 up to a maximum of 30 iterations. 

The iteration converges for A = 2,4 and 8, but for A = 16 the iteration cannot converge (without 
relaxation) even using a finer space mesh. We report the error estimate effectivity (estimate/error) 
ratios in Table ??. 

I   A ratio 

2 0.999942588 
4 0.997737471 
8 0.978260934 
16 1.647440221 

Table 4.2. Effectivity ratios for Example 4.2.1. 

These results the typical accuracy of the estimate. The estimate is even reasonably accurate in the 
last case where, as noted, the iteration does not converge. This estimate in the last case is affected 
by significant linearization errors since U2 does not represent u2 very well. 

Figure 4.2 presents the partial sums of the first j history terms for the different values of A. For 
A = 2,4,8, the error contributions become relatively constant when more than five error terms are 
included, but in all cases taking simply the first error term only (the "primary error contribution") 
leads to a poor error estimate. 
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10 15 20 
3 of history terms 

Figure 4.2. Numerical error estimate J2T=\ Tl(U^k~:'Jrl\(p"';U^k~:'^) including in history terms, for 
Ex. 4.2. and A = 2,4,8,16. 

4.2.2. The effect of large numerical error on the history contributions. Let A = 10, ß = 10, h = 
0.05. The fixed point iteration fails on a coarser mesh of h = 0.2, but for h = 0.05 the iteration 
converges slowly. In this computation, the error estimate is affected both by the inaccuracies due to 
linearizing about U^ for i relatively small as well as the poor numerical resolution of the adjoint 
solution $ (computed using quadratic finite elements on the mesh for U). Both sources of numerical 
error destroy the accuracy of the estimate. We see the effect in Figure 4.3, where we observe that 
the contributions to the error estimator increase as the final("older") history terms are included, 
after having reached an earlier plateau. This is the opposite of the expected behavior that error 
contributions should decay, and is in an indicator that the error estimator is not performing well. 
Large adjoint solutions relative to the size of the solution can be an indicator of unreliable error 
estimates. 

10 15 20 
£ of history terms 

Figure 4.3. Numerical error estimate Yl'jLi'R-iU ><t>   >U   ~   ) '"eluding m history terms for 
Ex. 4.2.2, demonstrating that numerical error can lead to non-convergence and poor numerical error 

estimates. 

4.2.3. The effect of a poor initial iterate on the history contributions. Let A = 10, ß = 10, h = 
0.05. The choice of initial data for the iteration can strongly influence the performance of the 
error estimator. In Figure 4.4 we plot the error contributions for C/2' =0 versus t/j — x(l — x). 
In this case, the norm of several of the early solution iterates is greater than 1014, while the 
norm of the converged U^ is 0(1). The difficulty is that each history adjoint problem is 
solved using quadratic finite elements of size h = 0.05, and the resulting use of $b' instead 
of (f>W in the resulting error representation formula yields an error which may be bounded by 
Ch\\Ulk-'+1^\wim])\\<l>W-$W\\wi{lo,i]) = C/i3||tf<fc->'+1>||||^1|| (assuming smoothnp,<f>and 
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u). The relative size of U^k~i+l^ and U^ means that the resulting error estimate is useless, despite 
the exponential decay of cj>^ as j increases. Incorporating additional history terms can reduce the 
quality of the estimator. 

I o 

1-4 

1-6 

•uj°l=x(l-x) 
-uj°l=0 

0 5 10 15 
History Tenn (j) 

Figure 4.4. Individual "history" terms TZ{U^k~:' + lK<t>^;U^k~:'^) for Ex. 4.23, illustrating the sensitivity 
of history error contributions to initial data. 

4.2.4. Adaptive selection of relaxation parameter and mesh resolution. In the three previous 
examples, problems with accuracy of the error estimate arise from slow convergence of the iteration 
and subsequent slow decay of the history contributions to the error. In Sec. 3.1.}, we described 
an extension of the a posteriori error estimate to a version of the Jacobi iteration that employs 
relaxation. The relaxation parameter directly enters into the history contributions of the error 
estimate. 

This suggests a generalization of an adaptive strategy in which the decay of the history 
contributions is monitored, and the iteration is interrupted and restarted with a new relaxation 
parameter value if the history contributions are contributing too much relative to the other error 
contributions. The efficiency question is balancing the error contributions between those arising 
from the discretization against those arising from the iteration. 

Consider once again the problem in §4.2, with quantity of interest equal to the value of u2 at 
x = 0.1 (adjoint data ip2 = <fo.i)- When ß = 10 and A = 20 this iteration cannot converge without 
relaxation, regardless of mesh density. 

We present the adaptive algorithm in Alg. 4. We begin the adaptive procedure using a coarse 
common mesh for both U\ and U2 with h = .2. We perform a Jacobi iteration with no relaxation 
until the convergence criterion (\\U' - f/'_1||oc < 10-7) is satisfied or a maximum of 8 iterations 
is reached. At this point, the (computable) iteration error estimate (2.11) is calculated. We then 
compute the error representation formula (3.4) using a variable number of history terms. In general, 
the minimum number of history terms is set to be min(4,/c), but the number of history terms 
computed is halted if the jth history term is too small (< CihStot) or too large (> C2h~l£tot) 
where C\ =0.1 and C2 = 10. We adapt the common mesh for Ui and C/2 using a standard "mark 
and refine" strategy applied to the a posteriori estimate using ||local error|| <TOL/(# of elements) 
as a marking criterion. If the iteration does not "converge" or if the iteration error estimate is greater 
than the numerical error estimate, we increase the relaxation parameter a and repeat the process. 
Various choices for updating a cam be employed at this step. The process continues until both the 
iteration and numerical error estimate are less than 10-5. 

We show the final adaptive solution for U2 in Figure 4.5. Generally, a quantity of interest of the 
value at a point leads to a mesh that is highly refined in a local neighborhood of the point. But the 
final refined mesh is nearly uniform as we see. This is a consequence of the errors inherited from 
previous iterations coupled to the fact that the solutions have significantly different scales, i.e. U\ is 
(9(1) while U2 is O(10~3)). Thus, the localized contributions that should result in the refinement 
of the mesh for U2 near x = .1 are masked by the much larger - and nearly uniformly distributed - 
contributions from U\ in previous iterations. 
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Algorithm 4 Adaptive algorithm including relaxation adjustment 

while total error < TOL do 
while iterations < k OR it. error > TOL do 

Compute [/<i+1> 
end while 
Compute $[11,..., $H, \<m<i 
while m < i or not STOP do 

if mth error term > Cih Yl™~1 (error terms) then 
if mth error term < C2h~1 X^"'~  (error terms) then 

m = m 4- 1 
Compute $lm+1l 

else 
STOP=true 

end if 
else 

STOP=true 
end if 

end while 
Refine mesh using Non-Iteration error estimate 
if Iteration error > Non-Iteration error then 

update relaxation parameter a. 
end if 

end while 

xlO 

Figure 4.5. Final adapted solution for U? for Ex. 4.2.4 showing the spatial grid. 

5. CONCLUSIONS 

We have presented an a posteriori error analysis for operator decomposition iterative solution of 
systems of coupled semilinear elliptic systems that use a block iterative solution technique. The 
analysis provides the means to compute accurate error estimates that account for discretization 
errors in the solution of each component at a given iteration, the errors passed between components 
at a given iteration, numerical errors inherited from previous iterations and errors arising due to 
the iterative solution procedure. This paper specifically addresses the propagation of error between 
iterates in the operator decomposition iteration solution and the effects of finite iteration on the error 
estimate. We extend the adaptive discretization strategy in [ 1 ] to systematically reduce the error. 
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A-posteriori error estimates for 
mixed finite element and finite volume methods 

for problems coupled through a boundary 
with non-matching grids 

T. Arbogast f, D. Estept, B. Sheehan§ and S. Tavener% 

[Received on 12 March 2013] 

Using an adjoint based a-posteriori error estimate, we explore the accuracy of two different discretization 
schemes applied to elliptic problems in which there are different meshes on two neighboring subdomains 
that share an interface. The first discretization is a mixed finite element mortar method which relies on 
interface variables to couple the subdomains, while the second discretization is a finite volume method 
which relies on geometrically motivated projections to couple the subdomains. To facilitate comparison 
of the accuracy of the two methods using the a-posteriori error estimate, the finite volume method is cast 
as a mixed finite element method using appropriate quadrature. The a-posteriori error estimate is derived 
and used to analyze both the size and source of the discretization error of both methods. We identify, 
through numerical examples, cases in which the geometric projections are the dominant source of error 
by one to two orders of magnitude. While this effect may be expected in examples where the solution 
is changing rapidly near the interface, it is also demonstrated for an example in which the solution is 
smooth, and nearly one dimensional across the interface. 

Keywords: mörtar methods, a-posteriori error estimate, coupled elliptic problems, heterogeneous domain 
decomposition, geometric coupling 

1. Introduction 

An important class of multiphysics problems has a structure in which one physical process dominates 
in one subdomain of the problem domain, while a second physical process dominates in a neighboring 
subdomain. The solutions are coupled by continuity of state and continuity of normal flux through a 
shared boundary between the subdomains. Examples include general problems of the heterogeneous 
domain decomposition type (Quarteroni et al., 1992; Gaiffe et al., 2002; Bernardi et ed., 1994), core- 
edge plasma simulations of a tokamak fusion experiment (Cary et al., 2008, 2010), and conjugate heat 
transfer between a fluid and solid object (Estep et al., 2008, 2009b, 2010). 
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In such situations, it is common to encounter significant differences in scales of behavior in the two 
subdomains. This in turn suggests the use of different discretization grids. However, this introduces the 
problem of interpreting the meaning of coupling state and flux values through the common boundary in 
the discretization, since exact pointwise matching is no longer possible. 

Confounding this issue are the practical difficulties of solving the large linear and nonlinear discrete 
systems associated with computing numerical solutions and the common situation in which two dif- 
ferent codes are used to solve the two subdomain problems. These difficulties are generally tackled by 
employing some form of iterative approach that involves sequential solution of the subdomain problems. 
The particular properties of the discretizations used for each component problem, the choice of iterative 
solution method, and high performance computational considerations all have a large impact on the way 
in which state and flux values are passed across the common interface. 

In this paper, we investigate the accuracy of two approaches to computing the coupling values in 
the situation in which the discretization grids in the two subdomains do not match at the interface. 
The analysis is carried out for the closely related mixed finite element and cell-centered finite volume 
methods. The two approaches are (1) the mortar element approach (Brezzi & Fortin, 1991; Roberts 
& Thomas, 1991; Arbogast et al, 2000; Ben Belgacem, 2000; Arbogast et al, 2007; Ganis & Yotov, 
2009), which uses a rigorous variational formulation to define a weak sense of coupling, and (2) a "geo- 
metric" approach that employs various ad hoc extrapolation and averaging methods. The use of mortar 
elements is proven to be optimally convergent on nonmatching grids, provided the finite element space 
used for the interface variables consists of piecewise polynomials of one degree higher than the trace 
along the interface of the finite element space used to approximate the flux within the subdomains (Ar- 
bogast et al., 2000). Nonetheless, while mortar elements are well known in some application domains, 
e.g., flow in porous media, they are not widely employed for multiphysics problems. Rather, various 
"geometric" techniques are used in most practical settings, especially in situations in which one or more 
of the components are solved with legacy "black box" codes. This second approach is often rationalized 
using a combination of ad hoc formal stability and/or accuracy arguments combined with high perfor- 
mance computing expediences. Moreover, in the situation in which legacy codes are used to solve either 
component, there is little choice because of the very considerable investment that would be required to 
replace these codes. 

We are not arguing for or against either mortar elements or "geometric" approaches. Rather, we ad- 
dress two issues: (1) What effect do these coupling approaches have on accuracy of specified quantities 
of interest? and (2) In each case, quantify the relative contributions of various aspects of discretization 
to the error in the computed information. The tool we use to address these issues is an adjoint-based 
a-posteriori error estimate (Estep et al, 2000; Becker & Rannacher, 2001; Giles & Suli, 2002; Wheeler 
& Yotov, 2005; Estep et al, 2009a; Hansbro & Larson, 2011). This goal-oriented estimate accurately 
quantifies various contributions to the overall error. In particular, the estimate distinguishes contribu- 
tions specifically arising from the mis-matched grids and the way in which the coupled information is 
approximated. We identify, through numerical examples, cases in which the geometric projections are 
the dominant source of error by one to two orders of magnitude. 

The remainder of this paper is organized as follows. Section two introduces the continuous problem 
and the details of the two discrete methods. Section three derives the a-posteriori error estimate. Sec- 
tion four contains the numerical experiments. Section five discusses computational logistics related to 
iterative solvers, and a brief conclusion is given in section six. 

-t +- 
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2. Definition of the problem and discretization methods 

3 of 24 

We define the coupled problem with a common interface, then describe the finite element and finite 
volume discretizations. We employ the well known equivalence between finite volume methods and the 
mixed finite element method (Russell & Wheeler, 1983; Weiser & Wheeler, 1988) to recast everything 
in the finite element framework. This greatly eases the derivation of a-posteriori error estimates and 
provides a systematic framework for describing geometric approaches to computing coupling values. 

2.1    The continuous problem 

The continuous problem (2.1)—(2.3) consists of a system of second order elliptic partial differential 
equations (PDE) in two spatial dimensions. The system is posed on a rectangular domain Q consisting 
of two nonoverlapping rectangular subdomains, QL on the left-hand side and QR on the right-hand side, 
that share a common interface f/, and whose union forms the entire domain, as shown in Fig. 1. The 
unit normal vector n is defined to point from left to right on fj, and is an outward pointing normal 
on fj, = dQi\rr and J/f = 3QR\//. For simplicity of presentation, we assume Dirichlet boundary 
conditions on «9^2, the external boundaries of the domain. The results extend to problems with Neumann 
conditions on part of the boundary in a straightforward way. 

17 rR 

1; 
Q, ^0 

L L 
n 

R 

rL rR 

FIG. 1. Subdomains, boundaries, and definition of normal n on the interface. 

For a source function /, split as fa 6 L?(Q.L) and fa € L2
(QR), and boundary data g, similarly split 

as gi € W3/2(fz.) and gR £ //3
/

2
(IR), the coupled system is 

a-
,uL+vPL = o,   [x,y)eaL, 

VuL=fa, 

PL = gL; 

a~lUR + VpR = 0, 

V uR=fR, 
( PR = gR, 

$=PL = PR, 

(x,y) € QL, 

{x,y)erL, 

{x,y) 6 QR, 

(x,y) 6 QR, 

{x,y) € rR, 

(x,y) e 17, 
n(uL-uR)=0,    (x,y)er,, 

(2.1) 

(2.2) 

(2.3) 

-+ t- 
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where we assume that the diffusion matrix, a, is a function of space times the identity, 

D(x,y) 
0 

0 
D(x,y) 

(2.4) 

with D 6 Wl-"(Q) and min_D(.v,;y) ^ Do > 0, so a is invertible and uniformly coercive. Note that we 

have defined ^ as the common interface pressure in (2.3). 

2.2    Mixed finite element mortar discretization 

The mortar finite element discretization was developed precisely for the situation presented by dis- 
cretization of (2.1)—(2.3) using two different grids in the two different subdomains. We assume that 
each subdomain is discretized by a (logically) rectangular finite element grid. Lagrange multipliers are 
introduced on the interface boundary to provide a weak formulation of the pressure coupling conditions. 
Since the grids are different on the two sides of the interface, the Lagrange multiplier space cannot be 
the normal trace of the velocity space. So, we introduce a mortar finite element space on the inter- 
face (Arbogast et ai, 2000; Bernardi et al., 2005; Arbogast et ai, 2007). As shown in Arbogast et al. 
(2000), the method is optimally convergent and has several other desirable convergence properties if the 
boundary space has one order higher approximability than the normal trace of the velocity space. The 
same order of convergence is obtained for both continuous or discontinuous piecewise polynomials in 
the mortar space. In our discretization, we choose the interface grid that has one cell for every two cells 
in the finer of the two subdomain grids. Fig. 2 shows the arrangement for a 5 x 5 grid next to 8 x 8 grid. 
(Note that our convention is that the finer grid is always used in the righthand subdomain.) 

FlG. 2. Example grid shown separated into the part on QL, /;, and QR from left to right. 

We use standard l? inner product notation, i.e., for functions F and G defined on Q, split as above, 

{Fi,Gi)=      Fj(x,y)Gj(x,y)dxdy,    i = L,R, 
Jüi 

and for functions defined on the boundaries, we similarly denote 

(F,G)n= I FGds,    i = L,J,R. 
Jr, 

The mixed finite element (mortar) method starts with the following continuous weak formulation. Find 

-t t- 
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Pi eWi = L2{Qj), Ui e Vi = H(d\v,Qi), £ 6 A = tf 1/2(J7), / = L,R, satisfying 

(a~luL,vL)-(pL,V-vL) + (%,n-vL)ri =-{gL,n-vL)rL, 

(V-uL,wL) = (fL,wL), 

{a~luR,vR)-(pR,V-vR)-{^,n-vR)ri = -(gR,n- vR)rK, 

{VuR,wR) = (fR,wR), (2.5) 

(n-(uL-uR),v}n=0, 

forallK,v,-,v)6(^,K,-,A),    i = L,R. 
To discretize, we use the lowest order Raviart-Thomas finite element space (RTO), in which the 

discrete scalar unknown ph is approximated as a constant over each cell, and the components of the 
discrete vector uh are approximated by functions that are piecewise linear in one spatial dimension and 
constant in the other (Bernardi et al., 2005; Estep et al., 2009a). The discrete interface unknown, £)

h, is 
represented by piecewise discontinuous linears on the interface grid cells (Arbogast et al., 2000, 2007). 
The test functions in the discretization of the weak formulation of (2.5) corresponding to w, v, and v 
are restricted to these same spaces. To be precise, for a finite element partition A of [a,b], and for 
r=0,1,2,..., q= —1,0,1,..., we define the piecewise polynomial space 

iJ(4) = {v6C(M): 
v is a polynomial of degree ^ r on each subinterval of A}. 

When q = — 1 the functions are discontinuous. The space of continuous piecewise bilinear functions is 
the tensor product jf£§ (A.v) <g> .^J (Av). The RTO discrete spaces are 

W,h = J[*_, (AVil) ® j£, (A,,,),    i = L, R, 

V'l = Ko1 (A,,,) ® ^/°, (A»,i)] X K-l (4r,/) ® ^ (4y,i)].      ' = i.A. 

A* = ^i,(4n). 

The mixed finite element (mortar) method reads: Compute p) e w/1, vl\ e V-, 5A 6 A'', i = L,/?, 
satisfying 

(fl-1
Ui,vL)-(^,V-vz.) + (^',n-vi)r/ = -(gt,n-vz.)rt, 

(V-«£,wt) = (/t,wt), 

{a-luR,vR)-(p
h

R,V-vR)-(^\n-vR)ri = -{gR,n-vR)rR, 

(V-4,WR) = (fR,wR), (2.6) 

(«■(^-4),v)r,=0, 

for all (w;,v(-, v) € (W/1, V*,A/'), /' = L,/?. This yields a discrete system of the form 

(2.7) 

where we abuse notation to let rf, p{', and £* denote the vector of nodal values for the finite element 
functions. 

ML -BL 0 0 CL 

Bl 0 0 0 0 
0 0 MR -BR CR 

0 0 Bl 0 0 
ct 0 cl 0 0 

r u'L i r -Di" 
p£ Ft 

< = -DR 

PR FA U\ 0 

-t t- 
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2.3    Geometrically coupled finite volume discretization 

The standard formulation of the finite volume method eschews a variational formulation of the problem, 
so there is no natural description of a weak imposition of the coupling conditions in that formulation. 
Moreover, the standard finite volume method provides approximation values of p only at cell cen- 
ters while approximate values for u along cell boundaries are obtained by differencing the p values. 
These characteristics motivate the use of "geometric" coupling techniques that employ a combination 
of extrapolation and averaging to provide coupling values of both unknowns along the interface. The 
motivation for this approach is reinforced in the context of iterative solution of the coupled problems, 
where well posed problems are created on each subdomain using interface boundary conditions ob- 
tained from the other subdomain. In this approach, it is necessary to couple the coarser side using state 
values extrapolated from the finer side solution, while the finer side must be coupled to flux values, 
which are themselves differences of state values, extrapolated from the coarser solution. Reversing this 
arrangement can lead to a singular system. 

• ■" a 

" <■ o 

'► " o 

l> " () 

<>■-•   • 

(>■■■■•   • 

)••••   • O        (>• 

FIG. 3. Extrapolation to the interface. Left: Neumann 
values on the interface are computed by linear extrapola- 
tion of the last two available flux values, which are dif- 
ferences of state values. Right: Dirichlet values on the 
interface are computed by linear extrapolation of the last 
two available state values. 

C) 

o 

D  [] 

E   [] 

OA 

()B 

OC 

FIG. 4. Averaging or broadcasting of extrapolated values. Left: In 
the case of constant extrapolation, the last available state or flux 
value is simply used as the interface value. Right: Weighted av- 
eraging of state and flux values when cell widths do not share an 
integer ratio. 

To obtain values on the interface, we employ either linear or constant extrapolation. We illustrate 
linear extrapolation in Fig. 3. We compute the extrapolated values by computing a linear or constant 
interpolant, which is then evaluated at the interface boundary. We denote the extrapolated values using 
the operators PR^i{ph

R) and Pi^R{ph
L). When the cells on either side of the interface do not match, then 

weighted averaging and "broadcasting" schemes are used to generate values. In Fig. 4, we illustrate the 
averaging and broadcasting schemes when two cells on the right match one cell on the left. The state 
values at the two circle locations are averaged and used at the square location. The flux value at the 
square location is "broadcast" to both of the circle locations. When the cell widths on the coarse and 
fine side of the interface do not share an integer ratio, then a suitable averaging of values is used. For 
example, in the 2 cells next to 3 cells arrangement pictured in Fig. 4, the state value at location D is set 
equal to | the state value at location A plus j the state value at location B. The flux value at location A 
is set equal to the flux value at location D, while the flux value used at location B is set equal to half the 
flux value at D plus half the flux value at E. 

We formulate the finite volume method as an RTO mixed finite element method employing a special 
quadrature formula, following Russell & Wheeler (1983); Weiser & Wheeler (1988). This provides 
a foundation for deriving an a-posteriori error analysis for the finite volume scheme, see Estep et al. 

-i t- 
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(2009a). The version of (2.6) equivalent to a finite volume method reads: Compute /?{" e Wf', u1' 6 V-\ 
t;1' e A\ i = L,R, satisfying 

(a~l uh
L,vL)MJ - {p\',V • v/J + (PR^L{p'R),n- vL)n =-{gL,n-vL)rLM, 

(V-uhL,wL) = (fL,wL), 

(a~luR,vR)MJ - (pR,V■ vR) - (^',n■ vR)r, = ~(gR,n-vR)rRM, 

(V-uR,wR) = {fR,wR), (2.8) 

((PL^R(pL)-n-u'R),v)r, = 0, 

for all (WJ, v,, v) 6 (W/', Vf, AA), i = L,/?. Here we employ the approximate inner product 

where Mi.\ and T^ denote the midpoint and trapezoidal quadrature rules in the x and y directions as 
indicated, while (v)j]./w denotes the midpoint rule for/ = L,R. 

This yields a discrete system of the form 

r ML -BL 0 QD 0 r 41 " -DL 

B[ 0 0 0 0 Pi. FL 

0 0 MR -BR CR UR 
= -DR 

0 0 B'R 0 0 PR FR 

0 QN cR 0 0 U" J 0 

(2.9) 

which should be compared to (2.7). 
It is possible to eliminate the unknowns u-t, i = L,R, and £, to reduce (2.9) to a system for p1} of the 

form 
AL    CD 

CN    AR 

pi 
P'ki 

FL 

FR 
(2.10) 

The averaging and broadcasting are incorporated into the "coupling Dirichlet" and "coupling Neumann" 
matrices Co and Cn- This is the same system that is constructed by using a finite volume approach 
directly. 

We have verified through numerical experiments that the p component of the solution of (2.9) is 
identical to the solution of (2.10). Furthermore, the u component of the solution of (2.9) is identical to 
the u values obtained by differencing the solution of (2.10) to approximate Vp at the cell boundaries 
and evaluating the diffusivity at the cell boundaries. The ^ component of the solution of (2.9) has no 
counterpart in the solution of (2.10). 

3. A-posteriori error analysis 

Our goal is to derive an a-posteriori error estimate for the quantity of interest 

(e«t. ¥„L) + (ePL,WPL) + (eUll,¥uR) + (ePR,WPK) + (^, V«)/?, (3.1) 

where yu,, \j/PL, \j/u , y/PR, and l//^ are given Lr functions and e^ denotes the errors in the corresponding 
variables.   We define the generalized Green's function corresponding to these functionals using the 
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adjoint problem 

'a-ltL-VZL = VuL 
onßi, 

-V-4L = yrPL on ili,, 

,5L = 0 on II, 

ffl->Ä-v& = y.J, onßfi 

-V*R = VPR onßß 

l& = 0 onT/?, 

'/3 = & = fe on 17, 

(3.2) 

(3.3) 

(3.4) 

The a-posteriori error estimates explicitly depend on <j>L, &, (f>R, and £/?. 

3.1    Estimate for mortar mixed finite element method 

We first derive an estimate for the mortar finite element method assuming all integrals in the weak 
formulation are computed exactly. We begin by substituting (3.2)-(3.4) for the various i^'s in (3.1) and 
applying the divergence theorem, 

(3.5) [euL,¥UL) + (ePL. VPL) + (euR, W) + {ePR, V«) + (el;. V«>r, 

= (eUua'
l<t>L) + (V-eUL,i;L)-(n-eUL,ß)rl-{ePLy-<t>L) 

(e«Ä>«_10«) + (V■■ eUR,C,R) + (neUR,ß)n -{ePH,V■ 0R) 

+(««.«• (♦t-*«)>r,- 

Expanding on the right and subtracting 

{a~luL,$L) - (/>/., V ■ 0L) 4- ($,n- <t>L)r, + («/.,«• QL)rL 

+ (V-Ilt, &)-(/!.,&.) 
+(fl"'«R,0R) - (/>«, V ■ <j>R) - (4,n• 0R)r; + (gÄ,n■ 0R)r« 

-{n-{uL-uR),ß)n = 0, 

obtained by substituting the adjoint solution as test functions into the forward weak form (2.5), gives 

(««/.. VHJ + (epuVPL) + (eUR,VUR) + (*M> VM) + <««. n)n (3.6) 
= -(«-'^,0J + (^,V-^)-<^,«.^)ri-(^,n-0L)r; 

-(«-14,0R) + (^,V.0/?)-<gR)n.^)rR + <4",«.0/?>r, 

+(n-(«*-«4),0>r,. 

-t- I" 
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We rewrite this as 

(«m. VuL) + ('PUVPL) + (*««. Vu„) + (ep«> VPK) + (e^n)n (3-7) 
=.(**M + (RpuCL) + (RuK,tK) + {RpK,ZR) + (Rs,ß)rl, 

wherein the residuals are given by 

RPL=fL-Vul    RPR=fR-V-ul    R^=n-{u1-uR). 

Note that the divergence theorem implies 

(RUL^L) = -{c-''A^L) + {ph
Ly^L)-{ph

L,n^L)dnL 

= -(a-luhL,<t>L) + (ph
Ly-4>L)-(gL,n-<l>L)rL-(t;",n-<l>L)rr 

Also note that ß = £j. = C,R for the continuous adjoint solution, but ß is distinct from t^L and C,R for the 
discrete solution. 

Next, we use Galerkin orthogonality.  We introduce projection operators that map into the finite 
element space of the discrete forward solution: 

p>l:L2(nL)^w£,   $:L2(nR)^WR\ 
n'l:L2{QL)^V'l     n'R^.L2(nR)^Vl    Z" :I2(I7)->A*. 

The actual choice of projection is immaterial for the estimate. In practice, we employ a combination of 
restriction and averaging. Without quadrature, Galerkin orthogonality for (2.6) is expressed as 

(RUL,n
h

L^L) + (RPL,P
h

La) + (RuR,n^R) + (RPR<P
h

R^) + (R^Zhß)ri=0, 

and subtracting gives the following result. 

THEOREM 3.1 The errors for the mixed finite element method (2.6) without quadrature satisfy 

(ew VPL) + (<V> YuL) + (eP^VPR) + (eUR,¥UR) + <««, V^>r, (3.8) 

= (RUL, *L -nh
L*L) + (Rpu & -F*b) 

+ (RUR,it>R-n^R) + (RPK,i;R-P^R) + {R^ß-Zhß)rn 

wherein the quantities on the right-hand side are computable provided the true adjoint solution is avail- 
able. 

In practice, we employ a numerical solution of the adjoint problem. To emphasize this, we state the 
following corollary that involves numerical adjoint quantities. 

COROLLARY 3.1 Provided that the projection operators p£, PR, J7*, TlR, and Z/, are bounded in L2, the 
errors for the mixed finite element method (2.6) without quadrature can be estimated as 

(ePL^pL) + (euL,YuL) + iePR^PR) + [eUirVuK) + («{. n)n (3-9) 

+ (R„KyR - nh
R<i>R) + (*,„#-/£{]$) + (Ri,ß

h-Zhß
h)rn 

for numerical solutions 0L « <j>'[, £/. « £*, $R « 0R, £/? ~ t,R, and ß « ßh. In this approximation, the 
errors are to be measured in the L2-norm. 

-f T- 
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The proof follows from the triangle inequality and the definition of the operator norm. That is, the 
absolute value of the difference between the right-hand sides of (3.8) and (3.9) is bounded by 

(l + ll^||)||Ä1,J|2||^-^||2 + (l + ||^||)||ÄpJ|2||&-&*ll2 

+ (l + ||^||)||/fUÄ||2||^-^||2 + (l+||PR
A||)||/?PÄ||2|KÄ-^l|2 

+ (l + ||ZÄ||)||Ä4||2,r/||j8-^||2,r/. 

In order to obtain accurate estimates, the numerical adjoint solutions must be sufficiently accurate. 
Generally this is satisfied by solving the adjoint problems either using a higher order numerical method 
or using a mesh sufficiently refined from the one used for the forward discretization. In the context of 
finite volume discretizations, the second approach is generally easier to implement. In our numerical 
examples we use a finer grid, and the accuracy of this approach is illustrated in section 4.1. 

3.2    Estimate for finite volume methods using geometric coupling 

3.2.1 The effect of quadrature. We first derive an estimate for the mixed finite element method (2.6) 
with quadrature, which can be applied, say, if /, g, and a are continuous. With quadrature, Galerkin 
orthogonality is expressed as 

{RUL,U'^L)Q^{RpuP'^L)Q 

+ (RUll,n^R)Q + (Rpit}P^K)Q + (R^Zhß)Qri=0} 

where we use the subscript Q to denote the approximate inner product using quadrature. It is impor- 
tant to distinguish residuals associated with approximating the solution spaces using finite dimensional 
polynomial spaces from residuals associated with approximating the integrals defining the variational 
formulation. We rewrite Galerkin orthogonality as 

(R„L,nfrL) + (RPL,PteL) + (RUR,n
h

R<i>R) + (*„„,/#;*) + <^,z„/3>r, 

-QEHL{nfri)-QEPL(p£b)-QEmK{nJltR)-QEPK(I$Sl,)-QEi(Zhß)=0, 

with 

QEUL(n
h

L<t>L) = (RUL,n£<i>L) - (RUL,n
h

LtL)Q, 

QEPL(hit;L) = (RPL,PtU - (RPL,PICL)Q, 

QEMR(nfoR) = (RuK,n^R)-(RHK,n^R)Q, 

QEPR(P^R) = (RPK,PHCII)-{RPH,PRMQ> 

QE^zfß) = (R^Zhß)rl-(Ri,Zhß)Q,rr 

This gives the following a-posteriori estimate for the mixed finite element method with quadrature. 

THEOREM 3.2 If /, g, and a are continuous, then the errors for the mixed finite element method (2.6) 
with quadrature satisfy 

(«a. WPL) + (««t. y«t) + (ePK> VPR) + (*«*■ V«*) + <««, Yfc)r, (3.10) 

= (RUL, <t>L - nfrL) + (RPL, CL - Ptb) 

+ (RUK,4>R-nh
R<FR) + (RPR,;R-Ph

R^) + (R^ß-Zhß)rl 

+ QEUL{nh
L$L) + QEPL{P>1(,L) + QEUR(nR<t>R) + QEPR{P^R) + QE% (zhß). 
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Note that in the case of using the RTO finite element space and the midpoint-trapezoidal quadrature 
rules discussed above, the mixed finite element method reduces to the finite volume method (Russell & 
Wheeler, 1983; Weiser & Wheeler, 1988; Estep et al., 2009a), and some of the quadrature error terms 
are zero. These terms are included for generality, so that (3.10) is valid for other combinations of finite 
element spaces and quadratures. 

Note that in practice, we implement the obvious analog of Corollary 3.1, which now requires suffi- 
cient smoothness of the solution to obtain sufficiently accurate quadrature approximations. 

3.2.2 The effect of geometric coupling. For the geometric coupling (2.8), the Galerkin orthogonality 
becomes 

(RuL,n
l^L)Q-{PR^L(ph

R)-^,n-nh
L^L)Qiri + (RPL,PJ'^)Q 

+ (RUK,n
h

RpR)Q + (RPH,Pl
RXR)Q + (R^Zhß)Qrl-(n-u'i-PL^R(ph

L),Z
hß)Qrl=0. 

Defining 

a^(ni$L) = {R„unl$L) - (RaL,nJttLh 
+ {PR^L(phR)-S\nfoL)Qri-(PR^L(ph

R)-!;h,n-nh
LiL)Ii, 

^(ZV,) = </^,Z,,j3)r, - (R^Zhß)Qr, 

+ (nL-u'i-PL-iR(pll),Zhß)o_rl-(n-ui~PL^R(pll)>Z
hß)rl, 

and arguing as above gives the following result. 

THEOREM 3.3 If/, g, and a are continuous, then the error for the mixed geometric finite volume method 
(2.8) satisfies 

(««. > Y>t) + (e"L ,Y*L) + (ePH. Vn) + (e»R . YuR) + (eS»n)r, (3.11) 

= {RuL,tL-nfrj + (foL(pk)-s\n-n£tL)riHKpL&-tik) 

+ (Ri,ß-Zhß)rl + (n-uh
L-PL^R(ph

L),Z"ß)r, 

+ 3£*AnfrL) + QEpL{Ptb) + Q^{rt*R)+QEpK{PR<#) + 4*t{^)- 

Note that in practice, we implement the obvious analog of Corollary 3.1, assuming again sufficient 
smoothness of the solution to obtain sufficiently accurate quadrature approximations. 

4. Numerical investigations 

In this section, we use the a-posteriori error estimates to investigate in detail the accuracy of the two 
approaches to coupling. For all of the investigations, the coarser subdomain Qi is given by x € [—1,1] 
and v 6 [—2,0], the finer subdomain QR is given by x £ [—1,1] and y £ [0,2] (see Fig. 1), and the 
interface f] is located along y = 0. (Note that here the bottom subdomain is considered as being "left" 
and the top one is "right," in conformance to our convention as to the finer subdomain.) The grids are 
reported as HL X mi for the left domain and nR x mR for the right domain, where n^ corresponds to 
the number of cells in the x-direction (which is also the number of cells along the interface), and m^ 
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corresponds to the number of cells in the y-direction. The boundary conditions for all tests are Dirichlet. 
To avoid issues arising from iterative solution of the discrete system, we employ direct methods to find 
the approximate solution to within machine precision. 

The quantity of interest being sought is specified by giving the adjoint problem data \j/Ux, y/„v, i/Ap, 
and i//>. The adjoint problem is solved using the same RTO mixed finite element method, but on a grid 
that is significantly finer than that of the forward problem, so that the discretization error associated with 
the adjoint solution has no significant effect on the results. 

The functions chosen for the source, diffusivity, and adjoint data are either constants or Gaussian 
functions of the form 

+ K, 
v/2? 

which gives a localized "ridge" centered at y = b. In the case of the adjoint data, the Gaussian or constant 
function being used is normalized so that the area under t// is equal to one. The parameter K is non zero 
only in the case of diffusivity, where this constant is added to the Gaussian to prevent the diffusivity 
from approaching zero anywhere in the domain. 

In the tests, we report values for the terms in (3.10) and (3.11) that are non zero. For both the mixed 
finite element and geometric finite volume methods the following five terms are included: 

MFEX    or    GFVl = (RUL)<t>hL-nh
L<l>hL), 

MFE2    or    GFV2 = (RUR:<phR-nh
R<t>hR), 

MFEi or GFV, = (RPLXl-PhdhL), 

MFE, or GFV4 = (RPR.,^-P^), 

MFE5    or    GFV5 = {Ri,ß
h-Zhß

h)rr 

In the geometric finite volume case, we add two additional terms relating to the geometric projections 
and two additional quadrature terms: 

GFV6 = (PR^L{pR)-^\n-UL :*£>r„ 
GFVn — {n-i thL-PL^R(ph

L),Z
h ß\, 

GFVS = 28UL(nWL\ 

GFV9 = QEUK(nWR). 

We note that the first five expressions, common to both MFE and GFV, are often similar in size. As a 
gross measure of the effect of geometric progression and of the use of quadrature, we also report the 
two ratios 

ratioDroi = =!=kl Li ratioquad = =^J L. PJ     £?=,|GFV;f q LU\GFVi\ 

4.1    Verification of a-posteriori estimate accuracy 

We begin with a problem for which we have manufactured the known solution 

p(x,y)=cos(y)cos(^). (4.1) 

-+ t- 
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The diffusivity a is equal to one everywhere. The other solution components, the source term /, and the 
boundary values g for the problem follow from (4.1). Since we know the true solution, we can compute 
the exact error terms (e, i//) on the left in (3.10) and (3.11) directly and then compare to estimates of 
the quantities on the right computed using a numerical solution to the adjoint problem. In this situation, 
the most important issue for the accuracy of the estimates is the accuracy of the approximate adjoint 
solutions. As the grid for the adjoint problem is refined, the estimates become more accurate. That is, 
using the approximation to the adjoint problem, the estimated quantities £MF£,- or £GFV; becomes 
closer to their true value, the error in the quantity of interest MFE £(e,!//) or GFV £(<?, y/). Tables 1 
and 2 show this using coarse and fine forward solutions. 

Table 1. The forward problem with solution (4.1) is run at 10 x 10 next to 16 x 16. The adjoint problem is run at several grids 
to show how the sum of terms approaches the direct calculation of (e. y/). The adjoint data components % and \jip are constant 
everywhere and y/r — 0. 

adj. grid MFE £>.!//) X.MFE, ratio GFV£(e.V) ZGFVi ratio 
20x20: 32x32 I.96E-3 1.47E-3 .749 -1.00£-3 -I.50E-3 1.49 
40x40 : 64x64 1.96E-3 .    1.84E-3 .937 -1.00E-3 -1.I3E-3 1.12 

80x80: 128x128 1.96E-3 1.93£-3 .984 -1.00E-3 -I.03E-3 1.03 
160x160: 256x256 I.96E-3 1.96E-3 .996 -1.O0E-3 -I.01E-3 1.01 

Table 2. The forward problem with solution (4.1) is run at 40 x 40 next to 64 x 64. The adjoint problem is run at several grids 
to show how the sum of terms approaches the direct calculation of (e, I//). The adjoint data components l//„ and y/p are constant 
everywhere and iff* = 0. 

adj. grid MFE £(<>, V) I/WFE; ratio GFV£(e:V) IGFVi ratio 
80x80: 128x128 1.23E-4 9.23E-5 .750 -7.00E-5 -I.01E-4 1.44 

160x160: 256x256 1.23E-4 1.15E-4 .937 -7.00E-5 -7.77E-5 1.11 

4.2    Convergence 

To compare the accuracy of the various approximations, we use the 2-norms 

Jn(p-phy-, \Kh = ^fa(ux-i4)2, 

\eu,\\2 /(„-< /r(5-W- 
We use the manufactured solution from the previous section {a = 1 and p is given by (4.1)). We compare 
the 2-norm errors of the finite element and geometric finite volume methods on a sequence of grids in 
order to asses the convergence rate. The coarsest grid is 10 x 10 next to 16 x 16, and the number of cells 
in each dimension is doubled with each refinement. 

The results in Tables 3-6 show that the convergence rate for the geometric finite volume deteriorates 
for the uXl »,., and E, components when the number of cells along the fine side of the interface is not an 
integer multiple of the number of cells along the coarse side of the interface. When the test is repeated 
with a grid starting at 8 x 8 next to 16 x 16, the convergence rates for the two methods are equal. The 
first order convergence of p and u for the MFE is to be expected (Arbogast et al., 2000). 
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Table 3. Convergence of solution component p, indicating a rate of 0(h). 
grid MFE IM MFE ratio GFV||ep|| GFV ratio 

10x10: 16x16 1.20E-01 N/A 1.20E-01 N/A 
20x20: 32x32 5.98E-02 2.00 5.98E-02 2.00 
40x40 : 64x64 2.99E-02 2.00 2.99E-02 2.00 

80x80: 128x128 1.49E-02 2.00 1.49E-02 2.00 
160x160:256x256 7.47E-03 2.00 7.47E-03 2.00 

Table 4. Convergence of solution component HT, indicating a rate of about 0(h). 
grid MFE He«, || MFE ratio GFV|k„J GFV ratio 

10x10: 16x16 8.49E-02 N/A 8.63E-02 N/A 
20x20: 32x32 4.21E-02 2.02 4.26E-02 2.02 
40x40 : 64x64 2.10E-02 2.00 2.14E-02 1.99 

80x80: 128x128 1.05E-02 2.00 1.09E-02 1.97 
160x160: 256x256 5.25E-03 2.00 5.63E-03 1.93 

Table 5. Convergence of solution component H,., indicating a rate of 0(h) for MFE but less for GFV. 
grid MFE \\e,w\\ MFE ratio GFV||<>„V|| GFV ratio 

10x10: 16x16 8.41E-02 N/A 8.59E-02 N/A 
20x20 : 32x32 4.20E-02 2.00 4.39E-02 1.96 
40x40 : 64x64 2.10E-02 2.00 2.29E-02 1.92 

80x80: 128x128 1.05E-02 2.00 1.23E-02 1.86 
160x160: 256x256 5.25E-03 2.00 6.94E-03 1.77 

Table 6. Convergence of solution component £,, indicating a rate of 0(h2) for MFE but only O(h) for GFV. 
grid MFE ||^ || MFE ratio GFV 1^ || GFV ratio 

10x10: 16x16 7.53e-03 N/A 6.11e-03 N/A 
20x20: 32x32 1.89e-03 3.99 1.79e-03 3.42 
40x40 : 64x64 4.72e-04 4.00 6.37e-04 2.80 

80x80 : 128x128 1.18e-04 4.00 2.77e-04 2.30 
160x160 : 256x256 2.95e-05 4.00 1.33e-04 2.09 

4.3    Test Case 1 

In the next problem, we explore accuracy for a solution that is not changing rapidly near the interface. 
We find that the use of geometric projections does not lead to significant effects on accuracy. We let 
the diffusivity a be one everywhere and use the manufactured solution given by (4.1). The grid for the 
forward problem is 20 x 20 next to 32 x 32. The adjoint grid is 80 x 80 next to 128 x 128, and the 
adjoint data is a nonzero constant for yfUx, y/„v, and \\fp, while y^ = 0. 

We list the error contributions in Table 7. For the geometric approach, we list results for both 
constant and linear extrapolation. The results show that the projection error for linear extrapolation is 
only about one quarter of the residual error, while the projection error for constant extrapolation is much 
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larger. Fig. 5 shows the solution components for the finite element case. The geometric finite volume 
solutions are very similar. Fig. 6 shows the adjoint solution components. 

Table 7. Error terms for Case 1. The forward grid is 20 x 20 next to 32 x 32. The adjoint grid is 80 x 80 next to 128 x 128. 

term MFE GFV{tinear) GFV (constant) 
1 («„,♦?.-n*#2) -1.6E-4 -1.6E-4 -1.5E-4 
2 («„.♦i-nJ#J) -6.1E-5 -6.1E-5 -6.1E-5 
3 {R^Q-AQ) 4.9E-4 ,    4.9E-4 4.9E-4 
4 (RPK^R-PliQ) 1.9E-4 1.9£-4 1.9E-4 
5 <Ä£,/3»-Z„/?")r, 4.2E-8 -1.3E-6 I.0E-5 
6 (PR^L(pb)-?,,n-nM)rl N/A 2.0E-4 I.7E-4 
7 (nul-PL^R{p^)j}ß")ri NVA 2.2E-5 3.9E-3 
8 J2£u,(nWD N/A -7.1E-4 -7.0E-4 
9 QEUs(nM) N/A -2.8E-4 2.7E-4 

total 4.6E-4 -3.0E-4 3.6E-3 
ratiopr„j N/A .25 4.5 
ratioqua(i N/A 1.1 1.1 

FIG. 5. Finile element solution components for Case 1. 

c" tf 0; ßh 

FIG. 6. Adjoint solution components for Case 1. Shown are plots for an adjoint solution using a 40 x 40 grid next to 64 x 64 grid. 
A solution on a finer grid is used to compute the estimates. 

4.4    Test Case 2 

The next test problem presents a more difficult solution for which the geometric projection error is by 
far the largest source of error. The grid is 40 x 40 next to 64 x 64 and the boundary conditions are g = 0 
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on both subdomains. Fig. 7 shows profiles of the source and diffusivity, while Fig. 8 shows the adjoint 
data. ' 

-l     -13     -i      -oi      a      0]       l       i.s       i 

FIG. 7. Source / (left) and diffusivity a (right) profiles for Test Case 2. The plots are shown in one dimension since the source 
and diffusivity have no variation in the .v-direction. 

VuM YSÖ0 Vp{y) Vt; 

FIG. 8. Adjoint data profiles for Case 2. The plots of y„r, y/Uy, and yp are shown in one dimension because they have no variation 
in the .t-direction. 

Because the source is large but the diffusivity is small along the interface, the solution changes 
rapidly near this region. This leads to relatively large errors near the interface for the geometric finite 
volume method. When the adjoint data is concentrated near the interface, the relative size of these errors 
is revealed. Table 8 lists the error terms. For this particular example problem, and this particular error 
measure, the error due to geometric projection is nearly eighty times the total error associated with the 
residuals. Fig. 9 shows the solution components for the finite element case, Fig. 10 shows the solution 
components for the geometric finite volume case, and Fig. 11 shows the adjoint solution. 

The shapes in Fig. 7 and 8 are based on a normalized gaussian of the form 
i 

. The parameter a is for normalization and 
is set to a — —j—. The parameter b delerminess the location of the peak and is set to zero to coincide with the interaface. The 
parameter c determines the width of the peak and is set to c = .2. In the case of diffusivity the dip is produced using the function 

10.3-10.(«££). 
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Table 8. Error terms for Case 2. The forward grid is 40 x 40 next to 64 x 64. The adjoint grid is 160 x 160 next to 256 x 256. 

term MFE GFV/(//H<?ar) GFV {constant) 
1 («„,,♦£-JiM) 1.6E-5 1.9E-5 2.4£-5 
2 (Ru^tt-nM) -2.6E-5 -2.6£-5 -2.5E-5 
3 (K,,,0-W) -3.1E-5 -3.1E-5 -3.1E-5 
4 (ÄPR.?Ä-/M) 4.6E-5 4.6E-5 4.6E-5 
5 <Äf,/J*-2»/J*)r,   ■ 4.8E-8 9.4E-6 2.6E-5 
6 (fl.-.t(pJ)-«*.-nM>r, N/A 2.3E-3 2.7E-3 
7 («•<-/t^(Pn,Z^")r, N/A 9.0E-4 8.4E-3 
8 Q£u,(n^1) N/A 1.2£-3 1.2E-3 
9 QEu, (JiM) N/A -2.4E-4 -2.5E-4 

total 5.1E-6 4.2£-3 1.2E-2 
ratioproj N/A 25 73 
ratioquali N/A 11 9.7 

FIG. 9. Finite element solution components for Case 2. Zooming in reveals that HJ is smooth and continuous across the interface. 

FIG. 10. Geometric finite volume solution components for Case 2. Zooming in reveals that wj is discontinuous across the interface. 
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0.? 0," 
FIG. 11. Adjoint solution components for Case 2. Shown are plots for an adjoint solution using a 40 x 40 grid next to 64 x 64 
grid. A solution on a finer grid is used to compute the estimates. 

4.5    Test Case 3 

In our final example, we examine a problem that places only one cell in the x-direction in one of the 
subdomains. Such a grid is only appropriate if the solution in that subdomain is essentially one dimen- 
sional, and varies only parallel to the interface. This situation arises in core-edge coupling in a tokamak 
fusion reactor. 

We construct a problem with a solution that is very nearly one dimensional in one subdomain, and 
contains variation in the second dimension well away from the interface. The pressure component of 
the solution is 

p(x,y) =cos(^- j +0.3sin(7Tx) 
-tanh(2(1.5-y)) 

(4.2) 

The grid is 1 x 32 next to 32 x 32 and the boundary conditions are provided by evaluating the known 
solution at the outer domain boundaries. The source for the problem is computed by substituting the 
chosen solution into the PDE. The diffusivity a is one everywhere. The adjoint data is concentrated in 
the finer subdomain, and is shown in Fig. 12. 

!   ; 

/       ' 

Vu,(y) v%O0 

. y i v 

¥P(y) n 
FIG. 12. Adjoint data profiles for Case 3. The plots of l//„,, %v, and yp are shown in one dimension because they have no 
variation in the jr-direction, and \y^ is a one dimensional function defined on the interface. 

Table 9 lists the error terms. For this example problem, the contribution due to geometric projection 
with linear extrapolation is approximately ten times the total contribution associated with the residuals, 
despite the fact that the solution is changing slowly near the interface. The projection contribution is 
much larger if constant extrapolation is used. Fig. 13 shows the solution components for the finite 
element case, Fig. 14 shows the solution components for the geometric finite volume case, and Fig. 15 
shows the adjoint solution components. 
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Table 9. Error terms for Case 3. The forward grid is 1 x 32 next to 32 x 32. The adjoint grid is 128 x 128 next to 128 x 128. 

term MFE GFV (linear) GFV (constant) 
1 (*.,., *2-nM.)     • 3.9£-9 6.8£-7 -1.5E-5 
2 (Ä„,,*S-ni*l) I.8E-5 1.8E-5 1.8£-5 
3 (Ä».C,*-^&*) -4.0E-6 -4.0E-6 -4.0E-6 
4 {

R
PR>£R-

P
R£R) 7.2E-6 7.2E-6 7.2E-6 

5 (Jtt,p-W)r, 0 -3.8E-7 1.7£-5 
6 </W(/>Ä)-«*,»-nM.)r, N/A 1.5E-4 -6.4£-3 
7 <ü - «7 - /v^«(rf.),z*/j*)n N/A -6.8E-5 3.1£-3 
8 .&?., (ii^y.) N/A -2.4£-5 2.5E-3 
9 ß^ß(fW) N/A 2.0E-5 1.9E-5 

total 2.1E-5 1.0E-4 -8.0E-4 
ratiopr„i N/A 7.3 155 
ratlOquaj N/A 1.5 41 

UX »V 

FIG. 13. Finite element solution components for Case 3. 

Ph «v < 5* 

FIG. 14. Geometric finite volume solution components for Case 3 computed using linear extrapolation. 
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W ß" 
FIG. 15. Adjoint solution components for Case 3. These plots are the adjoint solution using 64 X 64 next to 64 x 64 meshes. The 
estimates were computing using a finer grid. 

5. Iterative solvers and coupling strategies 

In practice, iterative solution of the coupled system is often employed. The specific choice of solution 
method is often constrained by certain computational logistics, such as the state of existing codes and 
data structures. We briefly discuss some aspects of iterative solution. The primary goal is to show 
that iterative solution strategies applied to systems like (2.10) can also be applied to systems like (2.7) 
without large changes to the computational structure. We do not discuss the convergence of iterative 
solvers. 

5.1     Iteration on the primary variable 

A common iterative technique for the geometric finite volume method (2.10) is to start with an initial 
guess (PL>PR) and proceed with the iteration 

0 
0 

AR 
\ rtl 1 

PT 
= ' FL ' 

FR 
- 

0    CD 

CN     0 
PL 

P'R 
( = 0,1,2, (5.1) 

This iteration requires only the inversion of AL and AR, that is, only single domain component solves. 
The application of Co and Qv can be viewed as the coupling strategy, in which information is swapped 
between the subdomains. 

It is possible to use an iteration of this type on the finite element system (2.7) as well. We must first 
reduce to a system in p by a preprocessing procedure. We first eliminate UL and UR, which results in 

BT
LM[lBL 0 -BT

LMlxCL 

0 B
T

RM^BR -B
T

RM^CR 

C[M[lBL    CIM^BR    -{C
T

LM[
1
CL+C

T
RM^CR) 

which we write succinctly as 

PL 

PR 

FL + BIM^DL 

FR + B
T

RM^DR 

CT
LMZ'DL+CT

RMR'DR 

(5.2) 

GL 0 -Hi PL RL 

0 GR -HR PR = RR 

H[ Hi -(KL + KR) $ SL + SR 

(5.3) 
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We then eliminate £, to obtain 

GL-HL(KL + KR)-
lH[ 

-HR(KL + KRy
[H[ 

-HL{KL + KR 

GR-HR{KL + KR) 
PL 

. PR . 

RL-HL{KL + KR)-
1(SL + SR) 

RR-HR{KL + KR)-
l{SL + SR) 

(5.4) 

System (5.4) has the same structure as (2.10), so an iteration analogous to (5.1) can be applied. The 
stencil within the diagonal blocks of (5.4) is very close, but not identical, to the stencil of a single 
domain discretization. The difference occurs only in the stencil corresponding to cells touching the 
interface. 

In some cases, e.g., the use of black box single domain solvers, it is necessary to construct a system 
in which the diagonal blocks correspond exactly to single domain discretizations. If this is the case, the 
strategy of "discretization consistent interface conditions" provides a partial solution. In this strategy, 
the diagonal blocks are single domain discretizations, just as in (2.10). The off diagonal blocks are 
populated by writing down both the Dirichlet and Neumann boundary condition equations for every 
cell touching the interface, rearranging those equations to isolate the boundary value terms and setting 
those terms equal to each other across the interface. If the cell ratio along the interface is integer, 
such as 4 next to 8, the resulting system is algebraically equivalent to (5.4). If the cell ratio is not an 
integer ratio, such as 5 next to 8, the equality of boundary value terms across the interface can only be 
enforced approximately, and the resulting system is not exactly equivalent to (5.4). While a complete 
discussion of the implementation of discretization consistent interface conditions is beyond the scope 
of this paper, it is worth consideration as an alternative to the full mortar method in cases where the 
computational structure is constrained by black box single domain solvers in combination with iteration 
on the primary variables. The concept of discretization consistent interface conditions is similar to 
strategies employed in Farhat et al. (1998) and Edwards & Rogers (1998). We should remark that the 
former paper recommended against mortar methods for the fluid-structure interaction problem, due to 
the lack of theory on optimal convergence and a need to invert a large interface matrix. However, for 
the problem considered in this paper, the mortar method does achieve optimal convergence. Moreover, 
we presented several compulational strategies that do not require inversion of an interface matrix. 

5.2    Iteration on interface variables 

An alternative iterative strategy (Glowinski & Wheeler, 1988) uses the interface variables as the primary 
variables. If we combine the u and p variables into the symbol t//, then system (2.7) can be written as 

We eliminate.!^ as 

[4    o    % ] " WL 
o    s/R   % VR 

.^L^R        0 [ « 

V/,=.^_1(^,' V6) 

^L 

0 

i = L,R, 

(5.5) 

which gives the following system for ^: 

(5.6) 
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If a Krylov method is applied to system (5.6), then only matrix vector products involving the matrix 
on the left are required. Since this matrix contains srf[x and <&R~\ obtaining a matrix vector product 
amounts to performing single domain component solves. Once % is obtained, y/ is recovered as above. 

In the setting of geometric coupling, we rewrite the geometric finite volume system as 

(5.7) 

where AL and AR are single domain finite volume systems, and the coupling strategy by which Dirichlet 
(D) and Neumann (N) data is provided by the opposite subdomain is defined by 

ENPL = N and EDPR = D. 

AL 0 UD 0 PL EL 
0 AR 0 UN PR ER 

0 ED -/ 0 D 0 
EN 0 0 -/ N 0 

Eliminating D and N from system (5.7) gives 

AL      UDED 

UNEN        AR 

PL 

PR 

EL 

ER 

which is identical to (2.10). If instead we eliminate PL and PR, the system (5.7) becomes 

/ EDA^UN 

. ENA^UD I 
D 
N 

EDAR^ER 

L ENA-L
XFL 

(5.8) 

which allows for an iteration of the form of (5.1) on the values D and A/, from which the primary 
variables can be recovered. Solving (5.8) by iteration is analogous to solving (5.6) by iteration, and both 
require only component solves. 

6. Conclusion 

The geometric finite volume method (2.10) is often used to discretize problems on mismatched grids. 
Using the fact that the finite volume method is equivalent to the mixed finite element method with a 
certain quadrature, we have cast (2.10) in a form analogous to a mixed finite element mortar method. 
Doing so allows us to directly compare the two discretizations with an a-posteriori error estimate. We 
have shown with numerical examples that while the geometric finite volume method performs well in 
some cases, there are cases in which the performance deteriorates dramatically relative to the mixed 
finite element mortar method. Furthermore, such cases are not limited to problems in which the solution 
is changing rapidly near the interface. The deterioration was shown to be due mainly to incorrect transfer 
of information (or projection error) across the interface. Finally, we have shown that the mixed finite 
element mortar method can be paired with iterative solvers in such a way that it can be viewed as an 
alternative coupling strategy, requiring only single domain component solves at each iteration. 
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Abstract 

This paper is concerned with the accurate computational error estimation of numerical solutions of 
multi-scale, multi-physics systems of reaction-diffusion equations. Such systems can present signifi- 
cantly different temporal and spatial scales within the components of the model, indicating the use of 
independent discretizations for different components. However, multi-discretization can have signifi- 
cant effects on accuracy and stability. We perform an adjoint-based analysis to derive asymptotically 
accurate a posteriori error estimates for a user-defined quantity of interest. These estimates account for 
leading order contributions to the error arising from numerical solution of each component, an error 
due to incomplete iteration, an error due to linearization, and for errors arising due to the projection 
of solution components between different spatial meshes. Several numerical examples with various 
settings are given to demonstrate the performance of the error estimators. 

Keywords: reaction-diffusion, adjoint operator, a posteriori estimates, discontinuous Galerkin method, 
iterative method, multirate method, multi-scale discretization, operator decomposition 

1. Introduction 

This paper is concerned with the accurate computational error estimation of numerical solutions 
of multi-scale, multi-physics systems of reaction-diffusion equations. The components of solutions of 
such multi-scale, multi-physics models typically exhibit spatial and temporal behavior occurring over 
a significant range of scales. For example, consider the well-known Brusselator model for chemical 
dynamics [25, 1], This is a system of reaction-diffusion equations whose separate components can 
behave over different spatial and temporal scales for particular choices of parameters. The model is 

ii\ -e\t^u\ - a - {ß + \)u\ + u\u2, XEQCR
2
, t > 0, 

cii2-e2&U2 = ßu\ -u\u2, xen,f>0, 

Ui(x, t) = a, u2(x, t) = ßla, xedn,t>0, 

ui(x,0) = ui,oU), U2U.O) = U2ß(x), xefl, 
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where ii\ and u2 are concentrations of species 1 and 2, respectively. We assume that 0 < eo < e,-, 
/ - 1,2, for some positive constant eo- The solutions are multi-scale in time and space for a wide 
range of parameter values. In Fig. 1 we show the solution at r = 1.0 corresponding to a = 2, ß = 5.45, 
ei =0.008, e2 - 0.08, c = 20 and initial conditions «i,oM = a + 0.1sin(nxi)sm(.7iX2) and "2,0(*) = ßla + 
0.1sin(7TJCi)sin(7rx2). We plot a cross section of the numerical solution at x2 = 0.25 in Fig. 2. There are 
sharp spatial gradients for the component U\, while u2 shows relatively less spatial variation, suggesting 
that we might use an relatively finer mesh to resolve U\. The time evolution of the solution at the point 
x = (0.25,0.25) is also shown in Fig. 2 and indicates the multirate nature of the solutions in which U\ is 
a faster component than «2 and requires relatively fine time steps for accurate resolution. 

40 

:20 

(a) (b) 

Figure 1: Brusselator: Color contour plots of the solution at T = 1.0. (a) U\(x). (b) u2(x). 
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Figure 2: Brusselator. (a) Spatial cross section of the solution at x2 = 0.25 and T = 1.0. (b) Temporal 
cross section of the solution at x = (0.25,0.25). 

In practical situations, the error of approximate solutions of multi-scale, multi-physics evolution 
models is always significant. Simply providing an a priori analysis of convergence and an assertion 
that the error is small for sufficiendy refined discretizations that cannot be achieved in practice is in- 
adequate for scientific purposes. Hence, application of numerical solution to predictive science and 
engineering applications requires accurate estimation of information computed from numerical solu- 
tion as part of the overall uncertainty quantification critical to scientific and engineering needs. 

For multi-scale problems, the demands of computational efficiency (or simple necessity) suggests a 
multi-discretization approach that involves solving the distinct components of a multi-physics model 
using independent meshes and time steps chosen to resolve behavior on the pertinent scales. A multi- 



discretization strategy often has significant effects on the accuracy and stability of the numerical solu- 
tion. Indeed, such multi-discretization methods fall into the general class of multi-scale operator de- 
composition methods [11], that typically employ some form of projection to link solutions computed on 
different spatial and temporal meshes and necessarily "synchronize" solutions that have been decou- 
pled during an iterative solution process. Since these practices can have a complex effect on accuracy 
and stability, there has been a steady development of a posteriori error estimates for a wide range of 
multi-scale operator decomposition methods in recent years [13, 12, 16, 18, 6, 7, 22, 21, 23] extending 
earlier work on a posteriori error analysis employing computable residuals and adjoint problems, see 
e.g. [10, 8, 9, 15, 19, 5, 3, 4]. While the primary purpose of such estimates is to quantify the contribu- 
tions of various sources of discretization error on accuracy and stability, the estimates can also provide 
guidance as to the choice of numerical parameters needed to obtain a desired accuracy. 

The analysis of multi-discretization numerical methods for multi-scale systems of partial differential 
equations in this paper extends earlier results for multi-rate time integration schemes for initial value 
problems for ordinary differential equations in [14]. For simplicity, we consider a system comprised of 
two reaction-diffusion equations: Find u = {u\ u2)T that satisfies 

iii - V- (£] Vui) = /i(«i, u2), (JC, t) e n x (0, T], 

ü2 - V- (e2 Vu2) = /2("i. u2), (JE, flefix (0, T], 

Ui(x, t) = 0, {x, t) e an x (0, T], i - 1,2, 

U,-(JC,0) = £,(*), jteQ, i = 1,2, 

where Q is a convex polygonal domain with boundary <3Q, {/)•} are differentiable functions of their ar- 
guments, )c,} and (g,J are smooth functions in O, and there is a constant CQ > 0 such that c, > e0 > 0 on 
n. Finally, we also assume that 

/,(0) = 0,    i = l,2. (3) 

The latter assumption is used to define the adjoint problems employed for the a posteriori error analysis 
carried out in Sec. 4. The ideas and results extend to systems consisting of more than two equations in a 
straightforward way. Condition (3) can also be generalized, see Sec. 4. Finally, neglecting the vastly more 
difficult questions of existence, uniqueness, and regularity for the problem, the analysis also extends to 
problems with nonlinear diffusion constants, and we show the formal result in Sec. 7. 

Whenever appropriate, we write the differential equations in a compact form 

ü-V-(cVu) = /(u), 

where e = diag(ei,e2), Vu = [Vu\ Vii2]T, and /(u) = lf\[u) f2[u)]T. The diffusion coefficients, e\ and 
€2, and reaction terms f\ and /2 may induce different spatial and temporal properties for u\ and u2. 
We adopt a multi-discretization approach in which each component model is solved on its own scale. 
In order to facilitate this approach, we compute the solution using a common iterative approach in 
which each component model is solved while fixing the other component solutions. The individual 
component solves are synchronized by exchanging information at designated "synchronization" times. 
At each synchronization time, component exchanges are iterated a specified number of times before 
the solution proceeds to the next synchronization time. 

In this paper, we derive accurate a posteriori error estimates for a quantity of interest obtained from 
a numerical solution computed using the iterative multi-discretization scheme. The estimates account 
for leading order contributions to the error arising from numerical solution of each component, multi- 
discretization, and iterative solution. The estimates quantify the relative size of the various contribu- 
tions to the error. We demonstrate the accuracy of the estimates on a variety of examples. 

The rest of the paper is organized as follows. In Sec. 2, we formulate an iterative multi-discretization 
Galerkin finite element method for (2). In Sec. 3, we formulate an analytic version of (2) that we use for 



the purpose of analysis. We present the first results of an analysis for the multi-discretization solution 
method in Sec. 4 followed by numerical examples in Sec. 5. In Sec. 6, we expand the analysis to include 
the effects of using different space meshes for the two components. We also give numerical results for 
the Brusselator problem in this section. Finally, in Sec. 7 we consider the analysis for systems in which 
the diffusion coefficient may depend on the solution. 

2. An iterative multi-discretization Galerldn finite element method 

In Alg. 1 we formulate the iterative multi-discretization Galerkin finite element method for (2). 
We first discretize [0, T] into 0 = t0 < h < t2 < ■ ■ ■ < t^ = T with time steps {At,, = tn - tn-i}^=v At = 
maxi<„<Af{Afnf and time intervals In = [fn-i,fR]. We think of {tn} as synchronization times during 
which information between the two component solves interior to the nodes is exchanged iteratively. 
To each tn, we assign a positive integer Mn which is the number of iterations to be used when synchro- 
nizing the fast and slow components. 

To solve the components over each synchronization interval, we divide the intervals {/„} into a num- 
ber of smaller time steps. We let !,-,„, t = 1,2 be two positive integers, where L\<n denotes the number 
of time steps used to solve the subsystem 1 and L2,n the number of steps used for subsystem 2 on each 
synchronization interval. Without loss of generality, we assume Li,„ = dnL2,n for some positive integer 
dn, i.e., L\,n is divisible by £2,«. We denote time steps for each component in the Galerkin formulation 
by As,,,, = Af„/L,r„, with As, = maxi<„</viAs,-,„}. We use an extension of the discontinuous Galerkin 
method [15]. The method naturally extends to the continuous Galerkin method [15]. 

To construct the finite dimensional spaces, we first discretize Q into triangulations 5";,,, where /J, 

denotes the maximum diameter of the elements of 3~h:, i = 1,2, i.e., each equation has different trian- 
gulation. Each of these triangulations is arranged in such a way that the union of the elements of 3~h. is 
D, and the intersection of any two elements is either a common edge, node, or is empty. 

The approximations are polynomials in time and continuous piecewise polynomials in space on 
each space-time slab S;„ =flx //„, for 1 = 1, ••• ,L\%n and St„ = Q x Ikn, for k — l,-- , L2,,,. Here /;„ = 
[f„_l + (/-l)Asi,„, tn-\ + lAsiM] and Ik,n = [tn-\ + (k-l)As2,n. tn-i+kAs2,n] are the smaller time intervals. 
In space, we let V^. c H^iü.) denote the space of continuous piecewise polynomial functions v(x) e 
U defined on 3~hr (For simplicity we confine our attention to problems with homogeneous Dirichlet 
boundary conditions). On each slab, we define 

wf*n = <wlx,t):w(x,t) = Yät
JVj(x),  VjEVhl, (x, r) E S/,„ I, 

W*n = < w{x, t): w{x, t) = £ t' Vj {x),   Vj e Vhl,  [x, t) e Sk,„ I. 

We denote the jump across tn by [w]n - w* - w~, where if* = limi—1± w(s). We let U\-,2 '■ W^' — wfj2, 

ri2—1 : W?2 —► W.*7' denote projections between the two spaces. The iterative discontinuous Galerkin 

dG(q) finite element approximation is written down in Alg. 1. In the algorithm , U{m) = [U[m), U^]7 £ 
wf1 x W^n are the finite element solutions, defined locally on time intervals //„ and Iic,n- The notation 

[a, b) denotes the I? inner product, or simply the spatial integral, Jnabdx. 

3. An analytic iterative method 

The approach to the a posteriori analysis of the multi-discretization finite element approximation 
in Alg. 1 we use in this paper starts with defining an iterative method to determine an analytic solution 



(4) 

Algorithm 1 Iterative multi-discretization Galerkin finite element method 

Set £/<M°> (•,£-) = "(•,?(,) 
for n = 1 to N do 

Setl/2
m = ^M"-,,(-,f„_i) 

for m = 1 to M„ do 
Sett/{m)(-,^_1) = f/(M«-l)(-,^_1) 
for / = 1 to L\itl do 

Compute U\m) e W^ satisfying 

(  (f>1
(m,-/1(t/1

(m)
1n2_](/f-

1)),i/)df+ (  (eivt/1
("I),VK)rff+([t/)"")]/_1,,!>^

+_1) = o 

for all V e W/7' 
end for 
for k = 1 to l2,n do 

Compute U{
2
m) e W^ satisfying 

f    [ü^)-f2{ü^2u\m\u(
2
m\z)dt.+j    [e2VU2

:m),Vz)dt+([U2
:m)h-i,n.ZZ_l)=0        (5) 

for all Z e IV^ 
end for 

end for 
end for 

of (2) obtained via a sequence of functions l«|m)(r)} that map the time intervals to the Banach space 
X = L2(n), i.e., u\'n\t) : [tn-i, tn] x X— X for i = 1,2. The iterative method defining {u|m)} is given in 
Alg. 2. 

The accuracy of the computational error estimate derived below assumes that the analytic iteration 
has converged to a sufficient extent and the discretization error is sufficiently small. The following 
assumptions provide sufficient general conditions to guarantee convergence of u|m) to u,, i = 1,2: 

Assumption A.l. Assume that f(t, u): [tn-i, tn] x X x X — X x X J'S uniformly Lipschitz continuous with 
constant L, i.e. 

\\f(t,u)-f{t,v)\\x*x<L\\u-v\\x*x   Vf>0. (8) 

Similarly, we assume that f'{u) is uniformly Lipschitz continuous with constant Ü.' 

Assumption A.2. Let M be the bound on the semigroup G associated with (2) (defined in the Appendix). 
We assume that the time steps Atn satisfy the inequality, 

MLAf„exp(MLAr„)< 1 (9) 

The convergence proof is given in the Appendix. We note that these are sufficient conditions to 
guarantee convergence of the iteration. They are not necessary and the iteration may converge in spe- 
cific cases without satisfying these assumptions. Our a posteriori analysis assumes the iteration is con- 
vergent and employs the Lipschitz assumptions, but does not specifically depend on the bound on the 
semigroup. 



Algorithm 2 Analytic iterative method 

for n = 1 to N do 
Setuf = u[M"-*h;tn-X) 
for m = 1 to Mn do 

Compute «|    (x, f) in f2 x /„ satisfying 

ii(,m) - V • (f! V«;"") = /1(u
(

1
m), uf-"),      (x, oefix /„, 

»l
1"

,)(x,f) = 0, (x,f)eanx/„, ^ (6) 

u[m\x, f„_,) = u^'Cx, r„_i),       xefl. 

Compute wi   (x, 0 in O x /„ satisfying 

ii[m) -V -{e2Slu[m))= f2{u\m] ,u[m)),        tx,t)enxla, 

u2
m)(x,f) = 0, (x, r) e <3n x/„, (7) 

u2
m,(x,r„_i) = u2

M"-l)(jc,fII-i),     xeQ. 

end for 
end for 

The motivation for introducing the analytic iterative solution method is the realization that the iter- 
ative multi-discretization Galerkin finite element method in Alg. 1 is a consistent finite element space- 
time discretization of Alg. 2. In particular, in (4) and (5) we have chosen piecewise space-time polyno- 
mials that solve the weak or variational formulation of (6) and (7) respectively. The variational formula- 
tion is obtained by multiplying each (6) and (7) by appropriate test functions, integrating over space and 
time, and using Green's formula on the elliptic part. In practice, we evaluate the finite element function 
using quadrature to approximate the associated integral, which results in a set of discrete equations. 

4. A posteriori analysis of the iterative multi-discretization Galerkin finite element method 

We derive computational a posteriori error estimates based on variational analysis, residuals of the 
finite element approximation, and the generalized Green's function solving the adjoint problem [8,10, 9, 
15,19, 5,3,11,4]. We first develop the analysis assuming the same spatial meshes for both components. 
We relax this restriction in Sec. 6 where we include the effect of projection between different spatial 
meshes. 

A key feature of the analysis is the realization that the iterative multi-discretization approximation 
is naturally associated with a different adjoint operator than that for the original problem. For this rea- 
son, we use a different linearization than commonly employed for nonlinear problems [13]. We assume 
that the operators for the original problem and the analytic operator decomposition version share a 
common solution, and use that as a linearization point for determining the stability properties of so- 
lutions in the neighborhood of the linearization point. The simplest example is to assume a common 
steady-state solution such as 0, which is guaranteed by the homogeneity assumption (3), i.e., /(0) = 0. 
This assumption is employed in many standard analyses of the model (2) and it is satisfied in a great 
many cases. The condition can be generalized ([see 13]), e.g. to other steady state solutions or to a 
given function of time. We give an example of a system (Brusselator) that uses an alternative condition 
in Sec. 6 [13]. We let 

dfi 
///(")= f   -fiisuids,   '.7 = 1-2, ,; Jo  duj 

(10) 



and f'(u) denotes the square matrix whose entries are (10). Then f{u) - f'{u)u. Associated with this 
linearized form, we denote by cp, the generalized Green's function satisfying the following adjoint prob- 
lem: 

' -(p-V-{eV(p)=Jr(ü)T<p,      (x,f)enx(r,0], 
tp{x,t)=0, U,t)eonx(r,0], eV<p = (^y^J • (ID 

cp{x, T) = y/(x), xeQ, 

On subinterval In = (tn-\,tn), we define the solution operators <P„ associated with the Green's function, 

<p(x,t) = <&„(t)y/n(x), 

for tn> t > tn-i and some initial data y/n. To get solution representation using the Green's functions, 
we multiply u with (11), integrate in time and space, resulting in 

{un,y/„) = (un..i,<pn-i)+ l   (ü-V■ (eVu)-f'(u)u,<p)dt 

'" (12) 
= (u„_i,<p„_i) + I   (ü-V-(.eVu)-f{u),(p)dt. 

Jin 

Because u solves (2), this last equality gives 

[u„,y/„) = (un-i,&„y/„). (13) 

4.1. Analysis of the analytic iterative method 

To simplify presentation, we express the analytic iterative method in Alg. 2 in a more compact for- 
mat. In particular, for any iteration index m, we write (6) and (7) as 

"(/!("!     ,UZ     )-/l(Ul     ,U2 )j (14) 

The vector <5^m) can be interpreted as residuals at the iteration level m. 
To define an adjoint for the approximation in Alg. 2, we let <p, denote the generalized Green's func- 

tion that satisfies an adjoint problem on time interval /„ as given in Alg. 3. Here Kn refers to the number 
of iterations to be used when synchronizing the two components of the adjoint. 

Notice that the adjoint problems are solved backward in time and in the reverse order to that of the 
forward problem, starting with <p2 followed by <p\. These generalized Green's functions are an iterative 
approximation of (11). We note that the coefficients /Y.(u(m)) are linearized around u(m). As in the 
forward problem, we can also rewrite this last algorithm into a compact form 

-^-v.^W^)) ^><>     ^.^j——^^^,        (17) 

for adjoint iteration level k. Here, £{
R' is the residual of the adjoint at iteration level k. We also introduce 

the solution operators Ol„fc), with (p(k)(x, t) = 0^\t)y/n{x), for t„ > t > r„_i. To get a representation of 
the iterative solution, we follow a similar derivation for the fully coupled problem (see (12)). Multiplying 
equation (17) by «(m), integrating each over fix /„ and applying integration by parts in time, and Green's 
Theorem in space and using (14), we obtain the solution representation of the analytic iterative method 

U<-n
m),Vn) = (Ü[

n
m.\Mnk)Vn)+[   (sf\cp^)dt-[   Um\{,f)dt. (18) 

Jin Jin 



Algorithm 3 Adjoint for the analytic iterative method 

Set (p{°] = vi,„ 
for k - 1 to Kn do 

„(« Compute (^2  (JC, 0 in ü x (r„, f„_i], satisfying 

(k) 
<p2 '(*,f„)=V2,n(*). 

Compute <p(. '(*, f) in n x (r„, f„_i], satisfying 

-ip[k)-Vi€lVtp[k))=f{l[U^)<plf)+fil[U^W2). 

<p[khx,t) = o, 

<p[k){x,tn) = y/hn(x), 

end for 

(x,f)enx(f„,f„_i], 

(x,()£i5nx(t„,t„-ii 

xeO. 

(x,r)Eflx(t„,t„.i], 

(x,t)eanx((„,[„.,] 

xefi. 

(15) 

(16) 

We note that this representation is not in the standard format (in which the solution at the current time 
level solely depends on the previous time level values). It contains remnants arising from the iterative 
procedure used to compute both forward and backward problems. The second term can be interpreted 
as the weighted average of the forward problem residual over a time step. The third term, on the other 
hand, is the weighted average of the backward problem residual over a time step. Thus, the iterative 
nature of solution procedure is reflected in this representation. Once convergence is reached both on 
forward and backward problems, then the standard convention of solution representation using the 
adjoint technique is recovered. v 

We are now able to express the error representation of the iterative implicit method.  Let e),    = 
u„ — u (»<) Now, we state a lemma concerning an error equation over one time step. 

Lemma 4.1. The analytic iterative method satisfies the following error equation over one time step: 

•a(m) ,(m) - raO»   rhW aim) Am) 
(C'. Vn) = ("» " uT'Yn) = CP^V«) + K-V^nVn) + K_r ^nVn) 

-f [6™,<pM)dt+[ Um\tf)dt, 
Jin •'In 

where AO„ = ($„ -0)(„fc)). 

Proof. Subtracting (18) from (13), and adding and subtracting {u("^v<bntyn), 

(e{
n
m),y/n) = {un-u<n

m),yn) 
Am)   ^(fc), 

-( [s™,<pto)dt+[ Um\<f)dt 
Jin Jin 

= (un-1-u^v<PnVn) + (u{
n%^nVn)-f{ [sf\(pM)dt + f (u{m),tf)dt 

'£<"»)    rft* Adding and subtracting («„.[^„Vn) to above equation completes the proof. 



4.2. Analysis of the iterative multi-discretization Galerkin finite element method 

To construct the adjoint, let zim) = su(m) + (1 - s)U{m), with 5 e [0,1]. Then let /'(z(m)) be a matrix 
whose entries are 

f'(z{m))ii=[  ^-(z{m))ds. 1    Jo  duj 

Consequently, /(u(m)) - f{Uim)) = /'(«<«>) (u(m) - Ulm)). 
Associated with the finite element solution, we denote by d the generalized Green's function that 

satisfies the adjoint problem in Alg. 4. As was the case in the adjoint formulation associated with ana- 

Algorithm 4 Adjoint for the iterative multi-discretization Galerkin finite element method 

Set«|0,=vi.n 
for k = 1 to Kn do 

Compute $2 '(*> 0 in n x (f„, r„_i] satisfying 

-df - V- (c2VÖ2
fc)) = f^(z™)tif +/1'2(z«"')fl(1' 

o2
fc)(jc,t) = 0, 

j(*-l) (i,f)enx(t„,r„.i], 

(x, r) e an x(f„, fn_i), (19) 

»(fc) Compute Ö,   (x, t) in n x (£„, tn-\] satisfying 

-d[k) - V• (e, Vd<fc)) = /,', (z<'»>)tf(,fc) + /2', (zC")Ö (fc) 
2    ' 

öl
1
fc)(x,t)=0, 

«(
I
t,(JC,fn) = Vi.n(x), 

(Ä,r)enx(tw,r„.il, 

(x,t)ednx(tn,tn_i], 

jcen. 

(20) 

end for 

lytic iterative method, this algorithm can be expressed as a compact form 

-6M - V • (eVtfw) = f'{zM)J6lk) + r]f,       r]f =   _ r-TT 
0 

(it)      o(Jt-l). (z^ud^-d^-1') (21) 

Here, r/fl' is the residual of the adjoint at iteration level k. 
At this stage, we are in position to derive an error equation associated with the iterative multi- 

discretization Galerkin finite element method. Let e(m) = u(m) - t/(m). First notice that using integration 
by parts, 

(eVu(m)-eVLr(m),Vtf(fc)) = (eVe(m),Vtf(fc))    = (e(m),-V-(cVÖ(fc))). 

Similarly, 

(/(u(m))-/({/(m)),0(fc)) = (/'(z<m>)elm),0(fc)) = (e(m),/'(z<'»>)T0lw). 

Furthermore, using continuity of u(m), 

g(m)+ =    (m)+ _ „(m) + = (   (m)- _ „(«)-)_ ((/(»» + _ „(mj-j = g(m)- _ [[/(»»] 
/-l,n        i-l,n        /-l,n l-\,n        l-\,n l-\,n        l-\,n l-\,n "   1'™ 



We use these three expressions on time interval //,„, Z = 1,2, — ,Li,„, to obtain 

0= f   Um\dm + V-(eVdik)) + f'{zM)rtilk) + ijjf) dt 

= (C"'fl!S)-H-i.+
B'
flM.») + /   (-e(m) + /("(m))-/(t/(m)).«(fc)) rf« 

+ [    (eVLT(m) -eVu(m), V0(W) dt + (    (e(BI,,i7j)) dr. 

Hence, 
0 = (*ff".*i5) - (*M,n " 't/(m)]'-l."'ö!-l,n) + f    (f>("!) -/(t/(m)).öW) rff 

+ (    (eV[/(m),Vöw)df+[    (e^.i/f) df (22) 

+ f   (-ü{m) + V-{eVu{m)) + f(u{m)),dw)dt 

Rearranging the terms in (22) and using (14) we obtain a recursive relation 

(e;,n    ,17(,»]     n-l,n'"/-l,iij     i1W      J'-l.n,0/-l,nJ 

• f    [(l/lm)-/(t/(m,),fllw) + (eV.£/lm),Vfl(W)]df 

+ 

(23) 

'h,n Jll.n 

This is the basis for the equation for the error at time tn stated in the following lemma. 

Lemma 4.2. The iterative multi-discretization finite element solution satisfies an error equation over one 
time step: 

l=lJ'l.n 

•ff   (öR^
m))-6R«J™),dM)dt 

tl.n 

+ 

where 
L\,n 

(24) 

(25) 

Qi,n = t\ [   \[-Ü[m)+fl{U\m\ulm-\d*))-(eiVU[m\vd*))]dt 

Q2,n = E {/    [(- Ü™ + f2(U[m\Up\d{k)) - {e2VU(
2
m),SIQ[k))]dt 

Proof. This is obtained by using the recursive relation (23) and applying integration by parts. D 

We note that this equation reflects the error arising from the consistent finite element numerical 
discretization of the analytical iterative method. Similar to Lemma 4.1, this error contains the iteration 
residuals weighted by the adjoint ö(fc). The last term cannot be approximated easily since it involves the 
error e(m) weighted by the iteration residual in the adjoint computation. However, provided that an a 

10 



priori estimate on e(m) is available, we can control this term to be relatively small due the fact that the 
residual can be made as small as needed when the adjoint computation is driven to convergence. 

We now collect all the results above and obtain an error representation of the finite element multi- 
scale iterative implicit method by setting e{m) = u- Ulm] = (u - w(m)) + («(m) - U{m)) = e(m) + eim). 

Theorem 4.1. Sety/N = xf/ andyr„-i=dl**l in Alg. 4 and y„_i = <p(„2[ in Alg. 3,for n = N,N-l,--- ,1. 
Then the error of iterative multi-discretization finite element solution at final time t^ = T can be ex- 
pressed as 

(e^n)~,y/N) = {uN - u^N)-,y) = £ (0i,n + Q2.n + Qxn + Q4l« + Os.« + «Je.»), (26) 
N 

I 
n = ] 

Qi,n and Q2,n are given in Lemma 4.2 with m = Mn and 

Q3,« = lf    (-ÖR(U^),d^)dt 
l=lJIl.n 

Q4,n = L£[     {8R{u^\d^-^)dt 
l=\Jlhn 

Qe,n = iCt^nWn) - £  [     f^"',I#J) at. 

Proof. First we estimate the error over one time step. Combining Lemma 4.2 and with Lemma 4.1 we 
get, 

(4M")_, Vn) = (S^-.d^l) + {e{
n
M_f,4>{K_"l) + Ol.n + Ql.n + Q3.n + Qi.n + Qs.n + Qt.n- (27) 

We note that since ü^fj,_ = üj^fj-1'" and u^' = u[™J'{l) (see Alg. 1), we have e^f' = e^f1'- and 
e„_i = en_"{ ■ This yields a recursive relation in terms of &Mn)~ and e(M"> for the total error over one 
time step. The error at the final time is obtained from undoing this relation and assuming e0°~ = e0° = 
0. D 

The terms Qb,n and Q&,n are not easy to approximate. However, provided the discretization error 
and the iteration error are sufficiently small, Q5,„ and QQIH are asymptotically small compared with 
Ql.n Qi.n- 

Theorem 4.2. The terms Y.%=\ Q5.n and Y.„= 1 Qe,n are asymptotically small compared with Y.„=i 0i,n> ■ ■ ■ < 
T.„=i Qi,n in the limit of iteration errors || M

(M,,)
 - uH/oo^^n)) and ll^'*"1 - <pll{,°°(/„;L2(n)) tending to zero 

for all n. 

Proof. Of the two, Qs,,, is more difficult to estimate. Let <p be the solution of 

-0-V-(eV0) = f'(uW»)) (p, (x,r) en x(r„, ;„_,], 
ip(x,t) = 0, . (x,r)e dn x (r„,f„_il, (28) 

0(x,tn) = yn[x), xeQ. 

Notice that (28) and (11) differ only in terms of linearization point for /'. Now we write 

<p - (p{Kn) = (</> - 0) + {0 - (p{Kn)) = a + ß, 

11 



where a and ß satisfy, respectively 

-d-V-(cVa) = /'(u(M«')  a + 8j,<p, (29) 

-ß - V ■ (eVß) = f'{u^^)7ß-^n), (30) 

with zero initial and boundary conditions, and we designate the 2x2 matrix Sp = f'(u) -/'(w(iW">). 
Multiplying (29) by a, and following by integration over (t, tn) x Q yields 

\\a(t)f < \\a(t)f + 2 f " (eVa,Va) dT 

= 2 j " [a,f'(u{M«))a)dT + 2 j "[<p,6ra)dT (31) 

<2Lf "\\afdT + 2 f " f \<p\\6p\\a\dT, 

where || ■ || is the norm in L2(Q) x L2(Q), and | • | is understood as the usual Euclidean vector norm for <p 
and a, or its corresponding matrix norm for Öf. There is a constant C^ <oosuch that HV'J llz.°°ci,/„.z.2(tJ)) < 

C<p, see for example [20]. We apply the Cauchy-Schwarz and arithmetic-geometric mean inequalities to 
the last term on the right hand side of (31) to get 

Ha(f)||2<2L["||a||2dT + j'"||ö/-||2dT + C2|',||a||2rfT 

= f "\\örfdT + (2L + Cl)J "Wafdr. 

Gronwall's inequality then implies 

||a(f)||2<exp((2L+C2)(f„-r))J     \\6f,fdT. (33) 

Similarly, we get 

||)3(r)||2<exp((2L)(fn-f)) J " H%n) f dr. (34) 

Next, we multiply «(Mn) to (29) and (30), respectively, integrate each of them over /„, and apply integra- 
tions by parts, and use (14) to get 

(32) 

( 

( 

and thus 

u{™?,a„-i)-f [ulM»\6}<p)dt = J [a.öf^dt, 

u[M?,ßn-i)+f  (ii{M-\#",)df=[ {ß,6^'])dt, 
Jin •'In 

(35) 

Qs,n= [  UM»),ö}<p)dt+ [ [a,öf"))dt+ f [ß,8{^])dt 

<( {8ru{M»\q>)dt+\\ {\\af +\\ßf)dt+l-{ \\8^n)fdt 

<f (Tiü)uw'>)-f(uW'-))><p)dt + ±f exp[C(tn-t))f\\\Ör\\2 + H^")\\2)dTdt + ^f \\öfn)\\2d t. 

(36) 

12 



Notice that the second term and third terms in (36) involve integration of the square of residuals. Thus 
these terms are asymptotically small compared to Q/,„, j = 1,- ,4 as «(yw,,) converges to u. Moreover, 
the first integral in (36) dominates the other terms. We show this term is asymptotically small compared 
to Q3,„ as u(Af/,) converges to u. 

First we bound the term Q3,n- From assumption A.l we have, 

Qxn=i f (/l(t/^"),^M"))-/l(y^^).^M""l))'ö•(K',,)dt 

<L£[  WU^-U^Hd^Wdt. 
(37) 

Now, 

Si lUWn)_U(Mn-l)l]dt 

if   llU^-u^^ldt^ff \\u^-u^-l)\\dt + Lf[   ||4M"-"-<"-"Mf.    (38) 
l=l->Il,„ l=\Jln l=\Jll.n 

Now, the first and the third terms are discretization errors, and depend on the order of the numerical 
method, say p (A t,h) for some homogeneous function p. From (68) in the proof of Theorem 9.1, Hu^"'- 

t4M"~"|| = 0(T
M

"), for some r < 1, and 

\u^)-u[M"-l)\\dt = 0{TM"+l). (39) 1 
Combining this with (37) and (38), we have, 

Q3,n = 0(p(At,h)+TM"+1). (40) 

We now return to estimate the first term in (36). Noting that fl{uw«))um") = f{u{Mn)) and by the 
assumption that /' is Lipschitz continuous with constant L', we have, 

f (Tiüiu^-f{uM"),(p} dt = f [(riM)-r(uw^))um"\<p} dt< [ L'wu-u^wwQWdt.   «u 
J t„ JI„ JI„ 

An analysis of the semigroup associated with the problem similar to that used in the Appendix to derive 
(68) yields \\u- u(M"'|| = 0(T

M
"
+1

). Combining this with (41) and using appropriate scaling we have, 

f (~rUT)uiM")-f(uM'>),<p)dt = 0(TM"+2). (42) 

Hence, Qsn is asymptotically smaller than Q3 ,„ as uSM,,) converges to u. 
Turning to Q§,n> we note that it is a sum of two terms. The first term is a product of iteration errors 

for the forward and adjoint problems, and is straightforward to bound as smaller than Qj,n, j = 1, • • • ,4 
as the iterations converge. The second term in Qj,„, j = 1, ■ ■ • ,4 is a product of discretization error and 
iteration residual in the adjoint. This is bounded smaller than Qj,n, j = 1,0,4 by an argument similar to 
that used for analogous expressions in Qs„. 

D 
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4.3. A computational error estimate 

The error representation in Theorem 4.1 contains terms involving the true continuum solution uSMn) 

as well as the true adjoint solutions cp{Kn) and 9iKn). We form a computational error estimate by approx- 
imating the adjoint solutions, <p(Är"),! and d(-K")-h, in a finite dimensional space. These adjoint problems 
are approximated by substituting the finite element solution uWn) for uWn), as is common in adjoint 
based error estimation literature. Further, the term Q4,n is expressed as, 

<?4,,, = E f    {ÖRiUW^.d^ -V*»') dt+iÖRiu^-ÖRiU^),^ -<p{K"]) dt (43) 

Here the term [ÖR{U
(

-
M

"
)
)-ÖR(U

{M
"
)
),9

{K
"
)
 -(plKn)) is a product of difference of two residuals, and hence 

we drop it in the computational error estimate. This leads to the following computational error esti- 
mate. 

Theorem 4.3. The error of the iterative multi-discretization finite element solution affinal time t^ = T 
can be approximated as, 

{e^n)-,^N) = {uN-U^N)-,^)«fd (<?!,„ +Qz,« + Q3lB + Q4,n). (44) 

where, 

-[[U1     J'-l.«'fll,/-l,nj;- 

1 = 1 Jkn 

Q4,n = E [     (öR{U{M»)),d{K»)M-ip{K»)M) dt 
1=1 J'in 

We present interpretations of the computational error contributions in Table 1. Note that we have 

Notation    Contribution 

Ql 
Q2 

04 

Discretization error in component U\ 
Discretization error in component Uz 
Iteration error for the numerical solution 
Error due to linearization in the computed adjoint problem 

Table 1: Error contributions and their interpretations 

dropped Q^,n and Q^n to obtain (44). As explained, this is reasonable provided the iteration has con- 
verged to a sufficient degree and the discretization is sufficiently refined. The examples below demon- 
strate the estimate (44) provides a reasonably accurate approximation of the true error. 
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Remark 4.1. We note that computing the error estimate (44) involves the cost of solving the adjoint prob- 
lem in addition to computing the original approximation. The computational cost depends on how the 
numerical adjoint problem is solved, however the adjoint problem is at least linear, and hence often in- 
volves less iteration than solving the original problem. 

On this issue, it is important to note that if the practical application requires an accurate error esti- 
mate to accompany a numerical solution, then the issue of cost of the error estimate has to be related to 
the cost of alternative approaches to error estimation. There are other ways to treat numerical solutions 
of coupled systems involving iteration, e.g. [18, 17, 16, 7]. Some of these approaches provide for direct 
estimation of the effect of finite iteration on accuracy, at the cost of greatly increasing the number of ad- 
joint problems that must be solved. The estimate in Theorem 4.1 is thus relatively inexpensive at the cost 
of assuming that the iteration has converged to a sufficient degree. 

Remark 4.2. Standard adaptive error control strategies based on the Principle of Equidistribution applied 
to "dual-weighted" a posteriori estimates, [8, 9, 5, 19, 3], can be extended to (44) in a straightforward 
way to balance all sources of error. For example, if the component Q\ is large, then refining the spatial 
and temporal mesh for the first component may lead to a more accurate solutions. A similar conclusion 
follows for Q2. The terms Q3 and Q4 reflect errors incurred due to finite iterations, and these errors may 
be reduced by increasing the number of iterations. However, we note that many application codes for 
multi-physics problems eschew adaptive computation. 

5. Numerical experiments using equal spatial meshes 

In this section, we present numerical examples to illustrate the performance of the error estimates. 
For various problems, we show plots of the error estimate and true error accompanied by plots of the in- 
dividual contributions to the error estimate, Qi,n,Q2,n<Qz,n<Qi,n as defined in Lemma 4.2 and Theorem 
4.3. A comparison of the relative sizes of the different contributions to the error is often illuminating. 

All forward problems are solved using continuous piecewise linear functions in space and using 
the piecewise constant discontinuous Galerkin method in time. The piecewise constant discontinuous 
Galerkin method, or dG(0), is equivalent to the backward Euler scheme. The nonlinear equations are 
solved using Newton's Method. The adjoint solutions are approximated using continuous piecewise 
quadratic functions in space and piecewise linear continuous Galerkin method in time. The piece- 
wise linear continuous Galerkin method, or cG(l), is equivalent to the second order Crank-Nicholson 
scheme. All problems are posed on the unit square, i.e., onfl = [0,1] x [0,1] and solved using a uni- 
form mesh containing (20 x 20 x 2) triangular elements. The initial conditions at time t = 0 are u = 
(sin(^^i)sin(7TJc2)( sin(^^i)sin(7TX2))T. 

The quantity of interest in all cases is given by the globally supported function y/ = (s'm(nxi)sm[7iX2), 
sin(7rxi)sin(7TX2))T. We compare the performance of estimators using either the analytical solution 
when available. Otherwise we use a "reference solution" using a higher order spatial discretization and 
a finer time step. In our numerical results, we plot the different error components and tabulate the 
effectivity ratio of the estimator. The effectivity ratio is defined as the ratio of the estimated error to the 
true error in the quantity of interest, provided the true error is not zero. An accurate error estimator has 
effectivity ratio close to one. 

5.7. An equal rate one-way coupled linear system 

We consider the system, 

ii\ - AU] = n2u\, 

Ü2-IS.U2 -n2{0.5u2 + ui). 
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Notice that this is a one-way coupled system in which the variable of subsystem 1, u\, is coupled to 
the variable of subsystem 2, but U\ can be solved independently of u2. The exact solution is u\ = 
e~n (sin(7rxi)sin(7r;c2) and ui - 2e~n 'sin(^X[)sin(^^2). hence there is not a significant difference in 
spatial or temporal scales. Since the system is only coupled in one direction there is no need to iterate 
to solve the system and there is no iteration error, i.e., Q3 = 0. Moreover, for linearly coupled systems 
0 = ö, and hence Q4 = 0. The system is solved until T = 0.2 with Ar = As\ - AS2 = 0.02. The error 
estimate was -0.0177161, as compared to the true error of -0.0169774 for an effectivity ratio of 1.04. 

5.2. A multirate coupled linear system 

We consider the system, 
ü\ - Aui = -lOOOwi + 112 

Ü2 - A»2 = 999ui -2u2. 
(45) 

Here, ii\ is a fast variable and 112 is a slow variable. We solve until T - 0.2 and plot the error components 
as a function of Asi in Fig. 3(a) while fixing Af = A$2 = 0.4. We use two iterations at each of the time 
steps Ar. As expected, the error in the component Q] decreases as Asj is reduced. In Fig. 3(b) we plot 
the effect of employing different number of iterations to solve the system at each time step At. In this 
case, we use At - 0.04, As\ = At 132 and AS2 = At 116. The iteration error decreases as the number of 
iterations is increased. Except in the extreme case of just one iteration, the contribution to the error 
from iteration is relatively small. In all cases, the error estimator provided an accurate prediction of the 
exact error. We recall that for linear systems, <p = d, and hence Q4 = 0. The accuracy of the estimator is 
also illustrated in Tables 2, which show effectivity ratios close to the ideal value of 1.0. 

w 
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w 

-3 f 9 ® ® - 
-1 

■ D D D D - 
-5 - * - 
-6 

■ ■ 

"7 - * - 
• Exact 

-9 R Estim ate 

"O Q2 * " 
* Qi 

-10 

12 3 4 

Number of iterations, M 

(a) (b) 

Figure 3: Example 5.2:  T = 0.2.   (a) Af = As2 = 0.4, M = 2.  Error contributions as Asi is varied,  (b) 
Af = 0.04, A$i = Af/32, A$2 = Af/16. Error contributions as Mis varied. 

5.3. A coupled nonlinear system using different time steps 

We consider the system, 
üi -Aii\ = u\ + Uy, 

ii2 - A112 
(46) 

u \ — u\. 

The system is solved until T - 0.2, with At = 0.04, Asy = At 116 and As2 = At 12. In Fig. 4 the result of 
increasing the number of iterations is demonstrated. The component Q3 is initially large, but decays to 
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AS! Effectivity Ratio 
0.4 1.12 
0.1 1.11 
0.05 1.12 
0.025 1.12 

M Effectivity Ratio 
1 1.06 
2 1.09 
3 1.09 
4 1.09 

(a) (b) 

Table 2: Effectivity Ratios for the experiment in Fig. 3. a) Effectivity Ratios as As\ is varied, (b) Effectivity 
Ratios as M is varied. 

a small value after two iterations. The component Q4 is nonzero for this problem, since the adjoints d 
and <p differ from one another. However, it is quite small compared to other components. Again, we 
obtained very accurate error estimates. Once again, the effectivity ratios, shown in Table 3 are close to 
the ideal value of 1.0. 
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Figure 4: Example 5.3: T = 0.2, Ar = 0.04, Asj = Ar/16, As2 -Atl2. Error contributions as the number of 
iterations M is varied. 

M    Effectivity Ratio 
1.08 
1.09 
1.09 

Table 3: Effectivity Ratios for the experiment in Fig. 4. 

5.4. A coupled nonlinear system using equal time steps 

We consider the system, 

üi-Awi=   exp(ui) + exp(u2) -2, 

C12 - Au2 = -exp(Mi)-exp(u2) +2. 
(47) 

The system is solved until T = 0.2, with At = 0.01, Asj = As2 = Af/2. The effect of increasing the number 
of iterations is shown in Fig. 5. The component Q3 is large after just one iteration, but contributes 
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relatively little after two iterations. The component Q4 is nonzero for this problem since the adjoints 
d and <p differ from one another. The effectivity ratios for this experiment are shown in Table 4. The 
effectivity ratios are quite close to 1.0, indicating the accuracy of our estimator. 
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Figure 5: Example 5.4: T = 0.2, At - 0.01, Asi = As2 = At/2. Error contributions as the number of itera- 
tions M is varied, (a) True and estimated errors, (b) Q3 and Q4 only. 

M    Effectivity Ratio 
1 
2 
3 

1.10 
1.09 
1.09 

Table 4: Effectivity Ratios for the experiment in Fig. 5 (a). 

6. A posteriori analysis of the iterative multi-discretization Galerkin finite element method for dif- 
ferent spatial meshes 

In this section, we derive an estimate for the case in which the two subsystems in Alg. 2 are solved 
on different space meshes. For such systems, we can further decompose the error components to re- 
flect the projection errors. Solution of (4) involves the projection of U^"~l\ denoted as ri2— it/^"'-1', 
from W?x to W?2. If the number of time steps are the same for the two subsystems, then fl2_i is the 
projection of functions from the mesh for subsystem 1 to functions on the mesh for subsystem 2. Sim- 
ilarly, solution to (5) involves the projection, rii_2^i > °^ ^l"'' on me sPace of functions on the mesh 
of subsystem 2. With these projections we have the following error representation. 

Theorem 6.1. Sety/N = V andy/n-i = 0 "1 for n - N,N- !,••• .1- Then, with Assumptions A. 1 and A.2, 
the error of iterative multi-discretization finite element solution at final time t^ = T can be expressed as 

N 
(UN - U{™N)-,y) = £ (0ifcn + Qlc.n + Qlb.n + Qzc.n + Q3.n + Q4,« + Q5,« + Qe.n), 

n=l 
(48) 
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where Qs>n, Q4r„, Q5,,,, Q6n are as given in Theorem 4.3 and 

Qib.n = f{f{ [(-y[m) + /i((/1
(m),n2_1c/f-1)),<))-(Clv(/1

("!),vö(
1
fc')]rf? 

QicM = {fMm\u^-l))-Mu[m\n2^u{
2
m-\ß\k)) 

Q2c,n = (/2(f/{m), t/im)) -/2(n1-2t/{m), i/f'), of). 

Proo/ Adding and subtracting (/i(l/1
(m),n2-.il^

m"1)),fl(
1
fc)) to (24), 

Oi.n = 11 [  \ [-ü[m)+fiiu[m\n2-lu
{

2
m-\dto} -[elVU[m\V<>)\dt 

+ (/i(t/,(m),uf-1))-/i(f/1
{'",,n2_1t/f-

,)),öt
1
fc))} 

= Qlb./7 + QlC« 

Similarly, adding and subtracting ifi(Ui^2u\m\ U[
2
m)),d[k)) to (25) leads to, 

Ql.n - Qlb.n + Qlcn 

Combining these with (26) leads to (48). D 

For simplicity in our examples, one mesh will always be a refinement of the other mesh. Nodal 
projection for the space meshes is employed for the operators fli_2 and n2_i. Further, we form a 
computational error estimate in the manner outlined in Section 4.3, representing the approximations 
of the terms Q(> as Qi,n- We recall Table 1 that describes the contributions to the error. 

6.1. A Linear System 

In this section, we consider the system, 

Üi-Aui = ui, (x,t)enx(0,n, 
w2-Au2 = b-Vu1 + u2, (x.OEflxfOJ], 

u, = 5xl(l -Xl)\e
10^ - l)x|(l - x2)

2(e10ri - 1), (x, t)efix {0}, 

u2 = sin(7rjci) sin(7rx2). (*■ V e n x {°'< 

(49) 

where b = (1000, 1000)T. The quantity of interest is taken to be if/ = (0, 100x2(l - JCI)
2

X
2
(1 -x2)

2)T. Note 

that due to the presence of the term b-Vui, the term./21(M(m))</>2*:) in Alg. 3 is interpreted as -V-(b</>2
fc)). 

The term /2, {z[m))d2
k) in Alg. 4 is treated in a similar fashion. 

In the numerical experiments, subsystem 1 is solved on a uniform mesh comprising (40 x 40 x 2) 
triangular elements. The mesh for subsystem 2 is varied through (5 x 5 x 2), (10 x 10 x 2), (20 x 20 x 2) and 
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(40 x 40 x 2) triangular elements and the system is solved with Ar = As\ = As2 = 0.01. We plot the error 
components as a function of the ratio of mesh sizes in Fig. 6. The figure indicates that the projection 
error Q2c dominates the total error when there is a large difference between the mesh sizes, and goes 
to 0 as the two meshes have the same size. 
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Ratio of mesh sizes 

Figure 6: Example 6.1: T = 0.2, Ar = Asi = As2 = 0.01. Error contributions versus ratio of mesh sizes. 

6.2. The Brusselator 

We recall the Brusselator problem (1) in Sec. 1. The values of different parameters are the same as 
in Section 1. The system as posed does not satisfy /(w) = 0. However, we use a change of variable to 
accomplish this. The new variables are defined as, 

u\ = ü\ -a 

"2 = Ü2- ßla 

With these new variables, u = (ui, u2)T, the new set of equations satisfy the requirement that /(u) = 0. 
We experiment with two different quantities of interest; a spatial quantity of interest at the final time, 
and a time based quantity of interest approximating the temporal derivative at a certain time. 

6.2.1. A spatial quantity of interest at the final time 

For this experiment, we take the quantity of interest to be 

*.[* (l-jtiHexp(6xf)-l)jf(l- 
0 

•x2)
2(exp(6x2)-D 

evaluated at final time T = 0.7. This quantity of interest is adapted from Ch. 8 in [2]. Mesh 1 and mesh 
2 were chosen to be uniform with (40 x 40 * 2) and (20 x 20 x 2) triangular elements respectively, Af = 
As2 = 0.001 and M = 2. In Fig. 7(a) the effect of decreasing Asi on the error components is evident and 
the error component Qu, decreases as Asi is reduced as expected. Note that the total error increases 
as A5] is reduced, due to cancellation of errors with opposite sign. In Fig. 7(b) the effect of varying the 
number of iterations M is shown. The rest of the parameters are the same as for Fig. 7(a) except that 
Asi is fixed at 0.001. For M = 1 there are significant errors in the components Q3 and Q4, but these 
errors decrease as the number of iterations is increased. 
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Figure 7: Brusselator: T - 0.7, At = As2 = 0.001. (a) M 
As\ = 0.001. Error contributions as M is varied. 

(b) 

2.  Error contributions as Asi is varied,  (b) 

6.2.2. Competing effects of discretization and projection 

Separate refinement of either of the spatial meshes may result in a reduction of discretization errors 
for the solution component(s) computed on that mesh, but may also increase projection errors. For 
this experiment, mesh 2 was held fixed with (20 x 20 x 2) triangular elements while mesh 1 was varied 
having (20 x 20 x 2), (40 x 40 x 2) and (80 x 80 x 2) triangular elements. Here Af = Asy = As2 = 0.001 
and M = 2. In Fig. 8(a) the error components are plotted for this series of different discretization levels 
for mesh 1. Note that discretization error Q^, decreased as the mesh ratio decreased (as mesh 1 was 
refined), but that the projection error Q2c increased. While the magnitude of reduction of Qn, exceeded 
the magnitude of the increase in Q20 the total error increased as mesh 1 was refined due to cancellation 
of errors with opposite sign. 

In Table 5 we tabulate the error contributions for three different choices of mesh 1, two uniform 
and one non-uniform. Fig. 8(b) where the mesh is refined in regions of rapid variation of component 
U\. Mesh 2 was uniform with (20 x 20 x 2) triangular elements for all three cases. Here At - As2 - 
0.001, Asi = Ar/4 = 0.00025, and M = 2. 

When mesh 1 has (20 x 20 x 2) uniform triangular elements, the first row of Table 5 indicates that the 
dominant error contribution is Qu,, the discretization error on mesh 1. Halving each element on mesh 
1 produces a situation in which the discretization errors on both meshes and the projection error are 
roughly of the same magnitude (row 2 of Table 5). Non-uniform refinement of mesh 1 such that it has a 
finer mesh in regions of sharp variation produces a similar distribution of error with 2/3 of the number 
of elements (row 3 of Table 5). 

Mesh Elements    Dofi    Dof2    Estimate       Qu, Q2b        Qic Qa Q4 

Coarse uniform 800 441 441 -0.1509 -0.2139 0.0618 0.0000 0.0003 0.0008 

Fine uniform 3200 1681 441 0.0644 -0.0358 0.0377 0.0614 0.0002 0.0007 

Non-uniform 2320 1241 441 0.0600 -0.0511 0.0398 0.0704 0.0003 0.0007 

Table 5: Brusselator: T = 0.7, At = As2- 0.001, As] - At 14 - 0.00025, M = 2. Error components for two 
uniform and one non-uniform mesh 1. Here Dof, refers to degrees-of-freedom for the component u,-. 
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Figure 8: Brusselator:  T = 0.7, At = Asi = A$2 = 0.001, M = 2.  (a) Error contributions versus ratio of 
mesh sizes, (b) Refined mesh used to produce error contributions provided in row 3 of Table 5. 

6.2.3. A temporal derivative as the quantity of interest 

For this experiment, we approximate the time derivative jjfnUidx of the average value of u\ at 
some t = to using a central difference. We approximate the temporal derivative of a function v by, 

dv 

dt t=tD 

v(tD + 0.5At)- v{tD-0.5At) __ , (50) 

In practice we approximate the point value using a local average. That is, v{r) » I/(T) = fT_r v(t)dt. 
As r — 0, v(r) — V{T). The adjoint solution required a finer (time) discretization near tp to accurately 
resolve the adjoint solution. Near f = to, we used a time discretization that was 100 times finer than 
that used for the forward problem. That is, in this region the time step is At 1100, where At is the time 
step for the forward problem. Moreover, we chose r = At/10. 

In Fig. 9(a) we investigate the effect of the number of iterations. We use Ar = As2 = 0.001, As\ = 
0.0005 and the same uniform mesh with (40 x 40 x 2) triangular elements for both components. For 
M = 1, the estimate is dominated by the term Q3 and then by Q4, which measure the effect of the 
number of iterations. 

In Fig. 9(b) we show the effect of varying As\ for fixed M. We use Af = A$2 = 0.001, M = 3 and the 
same uniform mesh with (40 x 40 x 2) triangular elements for both components. We see that the error 
in the component QK, decreases as As\ is reduced, as expected. The component Qu, also dominates 
the total error, so refining the time steps for this fast component leads to significant reduction of total 
error as well. 

7. A posteriori analysis for systems with nonlinear diffusion coefficients 

To explain how the a posteriori analysis can be extended to fully nonlinear coupled systems, we pro- 
vide a formal derivation of an a posteriori error estimates for systems of parabolic initial boundary value 
problems having nonlinear diffusion coefficients. We consider the problem of finding u = (u\, «2)T for 
systems in which the diffusion coefficient, e = e(u) is a function of u, 

ii\ -V-[e\{u\,u2)Vu\) = f\{u\,u2), 

Ü2-V-{e2{ui,U2)Vu2) = f2[u\,u2), 

Uj(x,t)=0, 

. Ui{x,0) = gi(x), 

(*,t)6Qx(0,n, 

(x,t)e0.x(Q,T\, 

(JC, o e an x (o, ru 
xefU = l,2, 

1,2 
(51) 
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Figure 9: Brusselator: Time derivative at to = 0.7 (final time is T = 0.8).  (a) Effect as the number of 
iterations M varies, (b) Effect as Asi varies given M = 3. 

or in a compact form, 
u-V-(e(w)Vu) = /(«), 

where e(u) = diag(ei(«) c2(w))- Meaningful analysis of general parabolic systems with nonlinear dif- 
fusion coefficients is very challenging, see for example [20], Generally, analytic results can be gready 
improved by employing the special properties of particular systems. We assume that the a priori analy- 
sis is in place and proceed to focus on the a posteriori analysis. 

We again use Alg. 1 to solve this system, with the obvious modification that e = e(.u) and for simplic- 
ity we consider a scenario of having the same spatial discretization for u\ and «2- The adjoint problem 
similar to (11) is modified to account for the dependence of e on u, 

-<p-V-{e{u)V(p)+e'{u)   ■V<p = f'(u)  <p, 

where e'{u) denotes a square matrix and e{u) is a diagonal matrix whose entries, respectively, are 

-1 dei 

'J I Jo duj 
{su)V(UjS)ds\    and   e i(«)= /   e,- 

Jo 
(us)ds. 

In compact form, the adjoint problems similar to (17) is also modified as 

-T ,,.,       ——T 
-<p (fc). V-(e(ufm')V^(W) +c'(«("")   ■ Vy(*)=/'(u<m>) (pm+Q;+{£', (it) , jrM ,  *lk) 

(52) 

(53) 

(54) 

where f}R' is as defined in (17), c'(u(m)) and c(ulm)) are similarly denned as in (53), and 

4*> = (o ^ä^)T-v(^)-v,|fc-1))]T. 
Similarly, the finite element adjoint problem (21) is modified as, 

-dm - V • (e(z<"!')V£>(fc)) + e'U{m))J • Vfl(fc) = /'(zC»))Tfl(« + r/<f + 17g», (55) 

where z(m) = su(m)+(l-s)t/(m), e'(z(m)) is a square matrix and e(z(m)) is a diagonal matrix whose entries, 
respectively, are 

e'.(zC"')= C p-bi{m))Vzlm)ds   and   e,(z<*>) = [* et[z
lm))ds. lJ Jo  0"j Jo 

(56) 
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The residual r/(fi' is as defined in (21) and 

T?* = [O   e'l2(zW)-V(d[k]-ß\k-]))\T. 

Analysis of this system leads to the following error representation. 

Theorem 7.1. Set xfr^ = iff and y/n-i = dn
n_x for n = N,N- 1,- ••, 1.  Then the error of iterative multi- 

discretization finite element solution of (51) at final time t^ = T can be expressed as 

{uN-U^N)-,^)=f^ [Ql,n + Q2,n + Q3,n + Q4,n + Q5b,n + Q6b,n + Q5c,n + Q6c,n), (57) 

where Q\ifl, Q2,n> Qi.n- Q4.11 ^re as given in Theorem 4,3, and 

Q5b,n = («««ft»,*•„*,) + [   [u^\^ +f«■») dt 
**if] 

Q6b,„ = (*„-i,A<P„v»)" f (   [&Mn)4nR) Won)) dt 
l = \Jh,n 

Qscn = L [   (öe1((/
(M"))V[/{M",)Vd\K"]) dt 

Qecn = I f   (fci(«w->)VuJ*'-).Vfl«'> - V^'l dt, 

M/^öei(u(m))=ei(«[m\4m))-ei(u["!\4m~1))(a«d5im/ZarZy/oröei(t/(m)). 

A proof similar to that of Lemma 4.2 is beyond the scope of this paper. With the appropriate a 
priori analysis in place, we expect that the terms Qsb.n'QscntQeb.n and Q6c,n are small compared to 
Ql.n'Qi.n- 

8. Conclusions 

In this paper we formulate and analyze an iterative mufti-discretization Galerkin finite element 
method for multi-scale reaction-diffusion equations. Subsystems in such reaction-diffusion equations 
may exhibit significandy different spatial and temporal scales, motivating a multi-discretization nu- 
merical method. We employ adjoint operators and variational analysis to form computational error es- 
timates for a quantity of interest calculated from the multi-discretization finite element method. A key 
insight in analyzing the multi-discretization method is the realization that the adjoint operator associ- 
ated with the iterative multi-discretization approximation is different from that of the original problem. 
Hence, our analysis utilizes two adjoint operators. One of the operators utilizes a different linearization 
than the one commonly used for nonlinear problems. The other adjoint is based on the property that 
our iterative multi-discretization Galerkin finite element method is a consistent discretization of the 
analytic iterative method. 

We derive a posteriori error estimates to quantify various sources of error in a quantity of interest 
computed from our iterative finite element method. We first derive estimates for the case when the 
different components of the system are solved on the same spatial mesh, and then extend the analysis 
to include distinct meshes. The error estimator has terms indicating errors arising from discretization 
of each component, finite iteration, differences between the two different adjoints and projection. We 
demonstrate the accuracy of our method through a variety of numerical examples, starting from simple 
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linear problems and ending with the non-linear multi-scale Brusselator problem. We demonstrate how 
refining one or both meshes or increasing the number of iterations can decrease the specific error com- 
ponents arising from a specific source. Hence our error estimates are useful not only for computing the 
total error in a quantity of interest, but also applicable in guiding an adaptive refinement strategy. 

9. Appendix 

We prove the convergence of the iterative scheme in Alg. 2. We consider w,(r) as functions from 
the interval to a Banach space X, u/(f) : \t„-\, tn) x X — X, where X = L2(fl), for i = 1,2. Let f{u) : 
[t„-\, tn] xXxX-XxXbe uniformly Lipschitz continuous with constant L, i.e. ||/(u) - fiv)\\xxx ^ 
L\\u- v\\xxxVt. Let -At = -V-e,V be the infinitesimal generator of the Co semigroup G,(f), t > 0, on 
X. For simplicity of notation, we denote A\ = Az - A and G\ = G2 = G. Then, based on the theory of 
semigroups [24], (6) and (7) on an interval [f„_i, f„] are recast as, 

u[m)(t) = G(t-tn-1)u\M-l)+[    G(t-s)fl(u\m),u{
2
m-l))ds (58) 

Jtn-\ 

u{
2
m)(t) = G{t-tn„1)uf"-l)+[    G(t-s)f2(u[m\u2

m))ds (59) 

Let M denote the bound on ||G(f)|| on [0, T\. We then have, 

Lemma 9.1. With Assumptions A. 1 andA.2, the integral equation 

{(r) = G(f-f„_i)a+ I     G{t-s)fitf,ß)ds (60) 

admits a unique solution (£,/}). 

Proof. The proof follows arguments used for ordinary differential equations [14] and employs tech- 
niques from [24]. Set £(0) = a and compute 

^) = G(t-t„-i)a+ f    G(t-s)fdt{j-l),ß)ds, 
Jt„-i 

for j = 1,2, For j - 1 we have, 

||f(0-G(f-f„_i)a||=   /     G(t-s)fi(a,ß)ds , 

=   /"    G(f-5)(//(a,/3)-/,(0,0))d5 
ll^^-i 

<Af„ML||(a,0)||. 

Moreover, using a semigroup property (cf. page 5 in [24]), 

<Ar„M||>4a|| 

(61) 

,    (since /,(0) = 0) 

II rf_r,"-> 
\G[t-t„-i)a-a\\ = \\\ G(s)Aads 

II Jo 

Using the above results and the triangle inequality, 

IK(1)U) - all < ||{(1)U) -Git- f„_i)a|| + ||G(f- f„_i)a- all < At„MLch 

where c\ = \\ia,ß)\\ + L-1H-Aa||. Now we use induction argument, where our induction hypothesis is 

Hu-l)it)-{{J-2]{t)\\ <ciiMLAtn)lJ-1] (62) 
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Then, using the Lipschitz continuity of / and our induction hypothesis (62) we have, 

<MnML\\^-l){t)-^-2\t)\\ 

<Ci(MLAtn)j 

Now, if MLAtn < 1, then for / > k > N, 

\\^(t)-^ht)\\< i iMt)-p-lhm<c\{Ml*t
A
H)N (63) 

j=k+i l-ML&tn 

Thus, HU)(t) -£(fc)(f)ll — 0 as N — oo. Hence, <f(/)(r) is a Cauchy sequence in the Banach space X, and 
hence converges to an element in X. We pass to the limit in (61), so that this limit satisfies (60). D 

Now we use this lemma to prove the convergence of Alg. 2. 

Theorem 9.1. With Assumptions A. 1 and A.2, there exists tn > tn-\ such that the sequence of functions 
[U™ ) and {u^} as defined in Alg. 2 converges to the exact solution of (2) on the time interval In = 
[tn-ii in)' 

Proof. The existence of the sequences {u[m)} and {u^"'} are established by repeated application of Lemma 9.1. 
For m = 1, we set a = u\{tn-\) and ß = u£\t„-\). Then, by Lemma 9.1, there exists a solution (uj11, u^) 
to the integral equation governing u\  . We obtain a similar result for w2   by setting a = U2(tn-\) and 
ß = u[l)(tn-i) . Hence, repeated application of this lemma shows the existence of the sequences {ujm)} 
and {Uj"1'}. Moreover, from the proof of Lemma 9.1 we have, 

IU4"U) - uf (OH = ||i41J(f) - u2(tn_i)|| S cxMLAtn 

Thus, 

l«|2)(f)-"["(f)lh f   ||G(r-s)(/1(Mf\i41))-/i(^1\^1)))|| + ||G(r-s)(/1(^
1\^1))-/1(u

(
1
1),«f))||d5 

<ML[    IIuf> - w[Ull ds + cvML{t- f„_i)2 

Jtn.\ 

Setting rn = MLAtnexp(MLAtn), we apply Gronwall's inequality, 

c T2 

||u(2)(r)- u|1J(fl|| < ClML{t- f„_i)2exp(MLAfn) < — '  "   - (64) 1 J MLexp(MXAf„) 

Similarly, 
CiT2 

\\uf{t)-u^\t)\\<— 7-7--— (65) 1 * MZ.exp(MLAr„) 

Now we use induction, where our induction hypothesis is, 

\\u[m-l\t)-u\m-2\t)\\<cnrrl (66) 

and 
|«4m-1,(fl-uf-2,(f)||SC„T™-1 (67) 
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where c„ = MLexp^LAf y We have, by our induction hypothesis and Gronwall's inequality, 

||M[w)(0-U(
1
m-1)U)||<f   \\G{t-s)(fd^n\u^--l))-h(ufl-i\u^-l)))\\ 

(m-1)  „(m-l)x      fl,Xm-\)  „(m-2k + ||G(f-5)(/1(ul'n-l,>l4'n-1J)-/i(Ul
1
,n-1',U^'))||d5 

< ML (    ||ujm) - u|m_1)|| ds + MIAfn||^
m_1)(f) - u 

Jtn-l 

<ML[    ||u[m)-w[w~1)||d5 + c,!MIA?„T^"1 

f"2)(OII 
(68) 

<MLAtncnr™ 'exptMLAf,,) 

= c„ C 
For T„ <1, and / >*:> N, 

II u\'ht) -u\k) («II < i: ii u\m)(t) -u[m-l){t) 
m=Jt+l 

oo 
< I II u m\t)- [m- 

"1JCf)ll 

< 
C   TN 

(69) 

(70) 

(71) 
1-T„ 

By enforcing T,; < 1, we get that u[m) is a Cauchy sequence that converges to an element in X. This 

is also true for u{"l). We pass to the limit in (58), so that it converges to the solution of the implicit 
equation. D 
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